故意将点取少些, 自行比较差异clc; clear;
lamda=;
a=0.5; rfa=lamda/a;
=meshgrid(-0.5:0.05:0.5); n=size(x);
for i=1:n, for j=1:n
if x(i,j)^2+y(i,j)^2>a^2, x(i,j)=nan; y(i,j)=nan; end
end; end
alpha=rfa(2,1); lam=lamda(2,1); rr=sqrt(x.^2+y.^2); alpharr=alpha*rr;
aaa=besselj(1,lam)/besseli(1,lam)*besseli(1,alpharr);
z=(besselj(1,alpharr)-aaa).*cos(1*atan2(y,x)); meshc(x,y,z);clc; clear;
lamda=;
a=0.5; rfa=lamda/a;
= meshgrid((0:1/20:1)*2*pi,0:.05:0.5); = pol2cart(th,r);
alpha=rfa(2,1); lam=lamda(2,1);
aaa=besselj(1,lam)/besseli(1,lam)*besseli(1,alpha*r);
z=(besselj(1,alpha*r)-aaa).*cos(1*th); meshc(x,y,z); 本帖最后由 加油花花 于 2013-1-24 16:29 编辑
求程序绘制振型图,固有频率和振型向量求解程序如下:function EX791
PlaneFrameModel ; % 定义有限元模型
SolveModel ; % 求解有限元模型
return ;
function PlaneFrameModel
global en disp ek dm k m
% 给定几何特征
E=2.1e11; %elastic molulus
poisson =0.3; % poisson ratio
density=7.85e3; %density
t=0.000152; %plate thickness
lx=0.021; %length in x direction
ly=0.004; %length in y direction
jdx=11; %number of nodes in x direction
jdy=11; %number of nodes in y direction
k(1:330,1:330)=0; %system stiffness matrix
m(1:330,1:330)=0; %system mass matrix
%prepare the arrays which are needed to describe this problem
en(1:100,1:4)=0; %element node
for ni=1:jdx-1
for nj=1:jdy-1
en(ni+(nj-1)*(jdx-1),1)=ni+(nj-1)*jdx;
en(ni+(nj-1)*(jdx-1),2)=ni+1+(nj-1)*jdx;
en(ni+(nj-1)*(jdx-1),4)=ni+nj*jdx;
en(ni+(nj-1)*(jdx-1),3)=ni+1+nj*jdx;
end
end
disp(1:jdx*jdy,1:3)=1; % node displacement
constraints=1:jdx:jdx*jdy;% constraints
disp(constraints,:)=0;
dof=0; %degree of freedom
for ni=1:jdx*jdy
for nj=1:3
if disp(ni,nj)~=0
dof=dof+1;
disp(ni,nj)=dof;
end
end
end
el=lx/(jdx-1); %element length
eh=ly/(jdy-1); %element height
=km(el/2,eh/2,poisson,t,E,density);
%km: function used to compute element stifness and mass matrix
%in this case, all elements have the same element stifness and mass matrix.
%built system stifness and mass matrix.
index(1:12)=0; % vector sontaining system dofs of nodes in each element.
for loopi=1:(jdx-1)*(jdy-1)
for zi=1:4
index((zi-1)*3+1)=disp(en(loopi,zi),1);
index((zi-1)*3+2)=disp(en(loopi,zi),2);
index((zi-1)*3+3)=disp(en(loopi,zi),3);
end
for jx=1:12
for jy=1:12
if(index(jx)*index(jy)~=0)
k(index(jx),index(jy))=k(index(jx),index(jy))+ek(jx,jy);
m(index(jx),index(jy))=m(index(jx),index(jy))+dm(jx,jy);
end
end
end
end
return
function SolveModel
global en disp ek dm k m
%solve eigenvalue problem
= eig(k,m);
tempd=diag(d);
=sort(tempd);
v=v(:,sortindex);
mode_number=1:15;
frequency(mode_number)=sqrt(nd(mode_number))/(2*pi);
frequency
return
function =km(a,b,poisson,t,E,density)
k=[E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson+30*b^2/a^2+30*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b+30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a-30*b^2/a), E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson-30*b^2/a^2+15*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b+15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a-30*b^2/a),E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson-15*b^2/a^2-15*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b+15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a-15*b^2/a), E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson+15*b^2/a^2-30*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b+30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a-15*b^2/a);
E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b+30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(8*b^2-8*poisson*b^2+40*a^2), -30*E*t^3/(360-360*poisson^2)*poisson, E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b+15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-8*b^2+8*poisson*b^2+20*a^2), 0, E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b-15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(2*b^2-2*poisson*b^2+10*a^2), 0, E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b-30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-2*b^2+2*poisson*b^2+20*a^2), 0;
E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a-30*b^2/a), -30*E*t^3/(360-360*poisson^2)*poisson, E*t^3/(360-360*poisson^2)/a/b*(8*a^2-8*poisson*a^2+40*b^2), E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a+30*b^2/a), 0, E*t^3/(360-360*poisson^2)/a/b*(-2*a^2+2*poisson*a^2+20*b^2), E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a+15*b^2/a), 0, E*t^3/(360-360*poisson^2)/a/b*(2*a^2-2*poisson*a^2+10*b^2), E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a-15*b^2/a), 0, E*t^3/(360-360*poisson^2)/a/b*(-8*a^2+8*poisson*a^2+20*b^2);
E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson-30*b^2/a^2+15*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b+15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a+30*b^2/a),E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson+30*b^2/a^2+30*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b+30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a+30*b^2/a), E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson+15*b^2/a^2-30*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b+30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a+15*b^2/a),E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson-15*b^2/a^2-15*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b+15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a+15*b^2/a);
E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b+15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-8*b^2+8*poisson*b^2+20*a^2), 0, E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b+30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(8*b^2-8*poisson*b^2+40*a^2), 30*E*t^3/(360-360*poisson^2)*poisson, E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b-30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-2*b^2+2*poisson*b^2+20*a^2), 0, E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b-15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(2*b^2-2*poisson*b^2+10*a^2), 0;
E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a-30*b^2/a), 0, E*t^3/(360-360*poisson^2)/a/b*(-2*a^2+2*poisson*a^2+20*b^2), E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a+30*b^2/a), 30*E*t^3/(360-360*poisson^2)*poisson, E*t^3/(360-360*poisson^2)/a/b*(8*a^2-8*poisson*a^2+40*b^2), E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a+15*b^2/a), 0, E*t^3/(360-360*poisson^2)/a/b*(-8*a^2+8*poisson*a^2+20*b^2), E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a-15*b^2/a), 0, E*t^3/(360-360*poisson^2)/a/b*(2*a^2-2*poisson*a^2+10*b^2);
E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson-15*b^2/a^2-15*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b-15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a+15*b^2/a), E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson+15*b^2/a^2-30*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b-30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a+15*b^2/a),E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson+30*b^2/a^2+30*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b-30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a+30*b^2/a), E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson-30*b^2/a^2+15*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b-15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a+30*b^2/a);
E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b+15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(2*b^2-2*poisson*b^2+10*a^2), 0, E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b+30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-2*b^2+2*poisson*b^2+20*a^2), 0, E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b-30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(8*b^2-8*poisson*b^2+40*a^2), -30*E*t^3/(360-360*poisson^2)*poisson, E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b-15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-8*b^2+8*poisson*b^2+20*a^2), 0;
E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a-15*b^2/a), 0, E*t^3/(360-360*poisson^2)/a/b*(2*a^2-2*poisson*a^2+10*b^2), E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a+15*b^2/a), 0, E*t^3/(360-360*poisson^2)/a/b*(-8*a^2+8*poisson*a^2+20*b^2), E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a+30*b^2/a), -30*E*t^3/(360-360*poisson^2)*poisson, E*t^3/(360-360*poisson^2)/a/b*(8*a^2-8*poisson*a^2+40*b^2), E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a-30*b^2/a), 0, E*t^3/(360-360*poisson^2)/a/b*(-2*a^2+2*poisson*a^2+20*b^2);
E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson+15*b^2/a^2-30*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b-30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a-15*b^2/a),E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson-15*b^2/a^2-15*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b-15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a-15*b^2/a), E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson-30*b^2/a^2+15*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b-15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a-30*b^2/a),E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson+30*b^2/a^2+30*a^2/b^2), E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b-30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a-30*b^2/a);
E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b+30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-2*b^2+2*poisson*b^2+20*a^2), 0, E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b+15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(2*b^2-2*poisson*b^2+10*a^2), 0, E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b-15*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(-8*b^2+8*poisson*b^2+20*a^2), 0, E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b-30*a^2/b), E*t^3/(360-360*poisson^2)/a/b*(8*b^2-8*poisson*b^2+40*a^2), 30*E*t^3/(360-360*poisson^2)*poisson;
E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a-15*b^2/a), 0, E*t^3/(360-360*poisson^2)/a/b*(-8*a^2+8*poisson*a^2+20*b^2), E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a+15*b^2/a), 0, E*t^3/(360-360*poisson^2)/a/b*(2*a^2-2*poisson*a^2+10*b^2), E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a+30*b^2/a), 0, E*t^3/(360-360*poisson^2)/a/b*(-2*a^2+2*poisson*a^2+20*b^2), E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a-30*b^2/a), 30*E*t^3/(360-360*poisson^2)*poisson, E*t^3/(360-360*poisson^2)/a/b*(8*a^2-8*poisson*a^2+40*b^2)];
w=a*b*t*density;
syms kx yt kxi yti real;
ni=1/8*(1+kx*kxi)*(1+yt*yti)*(2+kx*kxi+yt*yti-kx^2-yt^2);
nix=-1/8*b*yti*(1+kx*kxi)*(1+yt*yti)*(1-yt^2);
niy=1/8*a*kxi*(1+kx*kxi)*(1+yt*yti)*(1-kx^2);
n(1)=subs(ni,{kxi,yti},{-1,-1});
n(2)=subs(nix,{kxi,yti},{-1,-1});
n(3)=subs(niy,{kxi,yti},{-1,-1});
n(4)=subs(ni,{kxi,yti},{1,-1});
n(5)=subs(nix,{kxi,yti},{1,-1});
n(6)=subs(niy,{kxi,yti},{1,-1});
n(7)=subs(ni,{kxi,yti},{1,1});
n(8)=subs(nix,{kxi,yti},{1,1});
n(9)=subs(niy,{kxi,yti},{1,1});
n(10)=subs(ni,{kxi,yti},{-1,1});
n(11)=subs(nix,{kxi,yti},{-1,1});
n(12)=subs(niy,{kxi,yti},{-1,1});
temp=n'*n;
m1=int(temp,kx,-1,1);
m=int(m1,yt,-1,1);
m=m*w;
m=double(m);
return
加油花花 发表于 2013-1-24 15:55 static/image/common/back.gif
求程序绘制振型图,固有频率和振型向量求解程序如下:function EX791
PlaneFrameModel ; ...
你真的很厉害!
膜拜。
页:
1
[2]