如何调用matlab中的工具箱
我在matlab中安装了一个EMD的工具箱,想请教各位怎样使用这个工具箱呢,先谢过大家了 本帖最后由 牛小贱 于 2014-4-4 17:01 编辑关于EMD工具箱的使用教程,见附件:讲解很详细,包括工具函数、分解函数讲解,还有例子!!希望对你学习EMD有所帮助。 matlab菜单栏file->set path->addwithsubfolders-->选择emd文件夹-->save->close chybeyond 发表于 2014-4-2 13:38
matlab菜单栏file->set path->addwithsubfolders-->选择emd文件夹-->save->close
这个是安装过程吧,不过还是谢谢你了 牛小贱 发表于 2014-4-2 09:14
关于EMD工具箱的使用教程,见附件:讲解很详细,包括工具函数、分解函数讲解,还有例子!!希望对你学习EMD ...
谢谢,我先下来学习学习((em:08))
nice_cc 发表于 2014-4-2 14:19
这个是安装过程吧,不过还是谢谢你了
不好意思,没看清标题,这是别人一篇博客文章你可以参考下
工具箱函数
运行help index_emd可以查看工具箱提供的函数,如下
index_emd.M list of functions in the EMD package
type help function_name for more information on a specific function
Empirical Mode Decomposition
emd - computes EMD and bivariate/complex EMD with various options
emd_local - computes local EMD variation
emd_online - computes on-line EMD variation. Note that it does not truly
apply on-line: the function is only a demonstration.
emdc - fast implementation for EMD with Cauchy-like stopping criterion
(requires compilation, see make_emdc function)
emdc_fix - fast implementation for EMD with predefined number of iterations
(requires compilation, see make_emdc function)
cemdc - fast implementation for bivariate/complex EMD (first algorithm)
with Cauchy-like stopping criterion (requires compilation,
see make_emdc function)
cemdc_fix - fast implementation for bivariate/complex EMD (first algorithm)
with predefined number of iterations (requires compilation,
see make_emdc function)
cemdc2 - fast implementation for bivariate/complex EMD (second algorithm)
with Cauchy-like stopping criterion (requires compilation,
see make_emdc function)
cemdc2_fix - fast implementation for bivariate/complex EMD (second algorithm)
with predefined number of iterations (requires compilation,
see make_emdc function)
Utilities
install_emd - setup Matlab's path and compile the C codes.
uninstall_emd - revert the modifications made by install_emd and remove the
files (optional).
make_emdc - compile all C codes
emd_visu - visualization of EMD
cemd_visu - visualization of bivariate/complex EMD (automatically called
by emd_visu when the input is complex)
cenvelope - compute envelope curves for bivariate/complex EMD
cemd_disp - visualization of envelope curves and tube envelope
plot3c - plot a complex vector in 3 dimensions
plotc - plot the projection of a complex vector on a variable direction
dirstretch - directional stretching of a complex vector
hhspectrum - compute Hilbert-Huang spectrum (need the Time-Frequency Toolbox
http://tftb.nongnu.org)
toimage - transform a spectrum made of 1D functions (e.g., output of
"hhspectrum") in an 2D image
disp_hhs - display the image output of "toimage" as a Hilbert-Huang spectrum
addtag - add a tag to a graphic object (uses the Tag property as a list
of keywords or "tags")
rmtag - remove a tag from a graphic object (uses the Tag property as
a list of keywords or "tags")
hastag - test whether a graphic object has a specific tag (uses the Tag
property as a list of keywords or "tags")
findtag - find objects having a specific tag (uses the Tag property as
a list of keywords or "tags")
Examples from G. Rilling, P. Flandrin and P. Gon鏰lves,
"On Empirical Mode Decomposition and its algorithms"
IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing
NSIP-03, Grado (I), June 2003
emd_fmsin - Fig. 1: a 3-component example (need the Time-Frequency
Toolbox http://tftb.nongnu.org)
emd_triang - Fig. 2: another 3-component example
emd_sampling - Fig. 3: effect of sampling on 1 tone
emd_separation - Fig. 4: separation of 2 tones
ex_online - Sect 3.4: the way emd_online.m works
triangular_signal - subroutine called by emd_triang (formerly triang.m)
Examples from G. Rilling, P. Flandrin, P. Gon鏰lves and J. M. Lilly,
"Bivariate Empirical Mode Decomposition",
Signal Processing Letters (submitted)
bivariate_EMD_principle - Fig. 1: principle of the bivariate/complex EMD
bivariate_EMD_mean_definitions - Fig. 2: definition of the mean for each algorithm.
Also allows to test other signals and parameter sets.
bivariate_EMD_illustration - Fig. 3: illustration of the bivariate EMD
on an oceanographic float position record
稍做整理如下:
EMD分解函数
emd 计算EMD、双变量/复数EMD
emd_local 计算local EMD
emd_online计算在线EMD(不是真正在线应用,此函数只是一个示范)
emdc 使用Cauchy-like停止准则的快速EMD实现,需编译
emdc_fix使用预定义迭代次数的快速EMD实现,需编译
cemdc 使用Cauchy-like停止准则的快速双变量/复数EMD实现(方法1),需编译
cemdc_fix
使用预定义迭代次数的快速双变量/复数EMD实现(方法1),需编译
cemdc2
使用Cauchy-like停止准则的快速双变量/复数EMD实现(方法2),需编译
cemdc2_fix
使用预定义迭代次数的快速双变量/复数EMD实现(方法2),需编译
工具函数
install_emd 设置Matlab路径,编译c代码
uninstall_emd 回复install_emd做的修改,移除文件
make_emdc 编译c代码
emd_visu EMD可视化
cemd_visu 双变量/复数EMD可视化(emd_visu的输入是双变量或复数时自动改为调用cemd_visu)
cenvelope 计算双变量EMD的包络曲线
cemd_disp 显示复数包络曲线
plot3c 三维中绘制复数向量
plotc 绘制复数向量在一个可变方向上的投影
dirstretch 复数向量的方向拉伸
hhspectrum 计算Hilbert-Huang谱(需要时频工具箱http://tftb.nongnu.org)
toimage将一个一维函数谱转化为图像
disp_hhs 以Hilbert-Huang谱的形式显示toimage函数的输出
addtag 添加标签到一个图形对象
rmtag 移除标签从一个图形对象
hastag 测试一个图形对象是否有指定的标签
findtag 找有指定标签的图形对象
来自《On Empirical Mode Decomposition and its algorithms》的Examples
emd_fmsin 一个包含3组分的例子(需要时频工具箱)
emd_triang
另一个包含3组分的例子
emd_sampling effect of sampling on 1 tone
emd_separationseparation of 2 tones
ex_online the way emd_online.m works
triangular_signal emd_triang文件调用的子程序
来自《Bivariate Empirical Mode Decomposition》的Examples
bivariate_EMD_principle双变量/复数EMD原则
bivariate_EMD_mean_definitions 各种方法的平均值的定义
bivariate_EMD_illustration双变量EMD在海洋漂流位置的应用图解
工具箱使用示例
EMD
clc
clear all
close all
% 原始数据
fs = 1000;
ts = 1/fs;
t=0:ts:0.3;
z=2*sin(2*pi*10*t) + 5.*sin(2*pi*100*t);
figure
plot(t, z)
title('原始信号')
% EMD
imf=emd(z);
emd_visu(z,t,imf)
=hhspectrum(imf);
=toimage(A,f);
disp_hhs(im);
chybeyond 发表于 2014-4-2 19:45
不好意思,没看清标题,这是别人一篇博客文章你可以参考下
工具箱函数
运行help index_emd可以查看 ...
真的太感谢了,我好好学习一下{:{05}:} nice_cc 发表于 2014-4-8 10:24
真的太感谢了,我好好学习一下
不客气,送人玫瑰,手留余香 真的太感谢了,我好好学习一下{:{05}:} 非常感谢~ {:{39}:}{:{39}:}{:{39}:} 我快疯了,我是新手,刚刚注册,我想下载EMD 这个程序,但是到哪个里面都是下载受限,谁能帮帮我啊,我在这里跪谢了,给我下EMD的程序,谢谢好心人啊,我的邮箱是lpdlcb@163.com lpdlcb 发表于 2014-6-28 14:43
我快疯了,我是新手,刚刚注册,我想下载EMD 这个程序,但是到哪个里面都是下载受限,谁能帮帮我啊,我在这 ...
〖新手必读〗之如何获取积分,提高权限(新)http://forum.vibunion.com/thread-132101-1-1.html Good Good Good Good! 非常感谢
页:
[1]
2