机械振动研究简史
1656~1657年,荷兰的C.惠更斯首次提出物理摆的理论,并创制了单摆机械钟。20世纪初,人们关心的机械振动问题主要集中在避免共振上,因此,研究的重点是机械结构的固有频率和振型的确定。
1921年,德国的H.霍尔泽提出解决轴系扭转振动的固有频率和振型的计算方法。
30年代,机械振动的研究开始由线性振动发展到非线性振动。
50年代以来,机械振动的研究从规则振动发展到要用概率和统计方法才能描述其规律的不规则振动──随机振动。由于自动控制理论和电子计算机的发展,过去认为甚感困难的多自由度系统的计算,已成为容易解决的问题。振动理论和实验技术的发展,使振动分析成为机械设计中的一种重要工具。
分类
按产生振动的原因可分为:自由振动、受迫振动和自激振动;
按振动的规律可分为:简谐振动、非谐周期振动和随机振动;
按振动系统结构参数的特性可分为:线性振动和非线性振动;
按振动位移的特征可分为:扭转振动和直线振动。
自由振动 去掉激励或约束之后,机械系统所出现的振动。振动只靠其弹性恢复力来维持,当有阻尼时振动便逐渐衰减。自由振动的频率只决定于系统本身的物理性质,称为系统的固有频率。
受迫振动 机械系统受外界持续激励所产生的振动。简谐激励是最简单的持续激励。受迫振动包含瞬态振动和稳态振动。在振动开始一段时间内所出现的随时间变化的振动,称为瞬态振动。经过短暂时间后,瞬态振动即消失。系统从外界不断地获得能量来补偿阻尼所耗散的能量,因而能够作持续的等幅振动,这种振动的频率与激励频率相同,称为稳态振动。例如,在两端固定的横梁的中部装一个激振器,激振器开动短暂时间后横梁所作的持续等幅振动就是稳态振动,振动的频率与激振器的频率相同。系统受外力或其他输入作用时,其相应的输出量称为响应。当外部激励的频率接近系统的固有频率时,系统的振幅将急剧增加。激励频率等于系统的共振频率时则产生共振。在设计和使用机械时必须防止共振。例如,为了确保旋转机械安全运转,轴的工作转速应处于其各阶临界转速的一定范围之外。
自激振动 在非线性振动中,系统只受其本身产生的激励所维持的振动。自激振动系统本身除具有振动元件外,还具有非振荡性的能源、调节环节和反馈环节。因此,不存在外界激励时它也能产生一种稳定的周期振动,维持自激振动的交变力是由运动本身产生的且由反馈和调节环节所控制。振动一停止,此交变力也随之消失。自激振动与初始条件无关,其频率等于或接近于系统的固有频率。如飞机飞行过程中机翼的颤振、机床工作台在滑动导轨上低速移动时的爬行、钟表摆的摆动和琴弦的振动都属于自激振动。
内容
最简单的机械振动是质点的简谐振动。简谐振动是随时间按正弦函数变化的运动。这种振动可以看作是垂直平面上等速圆周运动的点在此平面内的铅垂轴上投影的结果。它的振动位移为x(t)=Asinωt 式中A为振幅,即偏离平衡位置的最大值,亦即振动位移的最大值;t为时间;ω为角频率(正弦量频率的2π倍)。它的振动速度为dx/dt=ωAsin(ωt+π/2) 它的振动加速度为d2x/dt2=ω2Asin(ωt+π) 振动也可用向量来表示。向量以等角速度 ω作反时针方向旋转,位移向量的模(向量的大小)就是振幅A,速度向量的模就是速度的幅值ωA,加速度向量的模就是加速度的幅值 ω2A。速度向量比位移向量超前90°,加速度向量比位移向量超前180°。如振动开始时此质点不在平衡位置,它的位移可用下式表示x(t)=Asin(ωt+http://a2.att.hudong.com/68/14/01000000000000119081414764468_s.gif) 式中http://a2.att.hudong.com/68/14/01000000000000119081414764468_s.gif为初相位。完成一次振动所需的时间称为周期。周期的倒数即单位时间内的振动次数,称为频率。具有固定周期的振动,经过一个周期后又回复到周期开始的状态,这称为周期振动。任何一个周期函数,只要满足一定条件都可以展开成傅里叶级数。因此,可以把一个非简谐的周期振动分解为一系列的简谐振动。没有固定周期的振动称为非周期振动,例如旋转机械在起动过程中先出现非周期振动,当旋转机械达到匀速转动时才产生周期振动。
机械系统和自由度
由质量、刚度和阻尼各元素以一定形式组成的系统,称为机械系统。实际的机械结构一般都比较复杂,在分析其振动问题时往往需要把它简化为由若干个“无弹性”的质量和“无质量”的弹性元件所组成的力学模型,这就是一种机械系统,称为弹簧质量系统。弹性元件的特性用弹簧的刚度来表示,它是弹簧每缩短或伸长单位长度所需施加的力。例如,可将汽车的车身和前、后桥作为质量,将板簧和轮胎作为弹性元件,将具有耗散振动能量作用的各环节作为阻尼,三者共同组成了研究汽车振动的一种机械系统。
单自由度系统 确定一个机械系统的运动状态所需的独立坐标数,称为系统的自由度数。分析一个实际机械结构的振动特性时需要忽略某些次要因素,把它简化为动力学模型,同时确定它的自由度数。简化的程度取决于系统本身的主要特性和所要求分析计算结果的准确程度,最后再经过实测来检验简化结果是否正确。最简单的弹簧质量系统是单自由度系统,它是由一个弹簧和一个质量组成的系统,只用一个独立坐标就能确定其运动状态。根据具体情况,可以选取线位移作为独立坐标,也可以选取角位移作为独立坐标。以线位移为独立坐标的系统的振动,称为直线振动。以扭转角位移为独立坐标的系统的振动,称为扭转振动。
多自由度系统 不少实际工程振动问题,往往需要把它简化成两个或两个以上自由度的多自由度系统。例如,只研究汽车垂直方向的上下振动时,可简化为以线位移描述其运动的单自由度系统。而当研究汽车上下振动和前后摆动时,则应简化为以线位移和角位移同时描述其运动的2自由度系统。2自由度系统一般具有两个不同数值的固有频率。当系统按其中任一固有频率自由振动时,称为主振动。系统作主振动时,整个系统具有确定的振动形态,称为主振型。主振型和固有频率一样,只决定于系统本身的物理性质,与初始条件无关。多自由度系统具有多个固有频率,最低的固有频率称为第一阶固有频率,简称基频。研究梁的横向振动时,就要用梁上无限多个横截面在每个瞬时的运动状态来描述梁的运动规律。因此,一根梁就是一个无限多个自由度的系统,也称连续系统。弦、杆、膜、板、壳的质量和刚度与梁相同,具有分布的性质。因此,它们都是具有无限多个自由度的连续系统,也称分布系统。
动态分析
只有在已知机械设备的动力学模型、外部激励和工作条件的基础上,才能分析研究机械设备的动态特性。动态分析包括:① 计算或测定机械设备的各阶固有频率、模态振型、刚度和阻尼等固有特性。根据固有特性可以找出产生振动的原因,避免共振,并为进一步动态分析提供基础数据。② 计算或测定机械设备受到激励时有关点的位移、速度、加速度、相位、频谱和振动的时间历程等动态响应,根据动态响应考核机械设备承受振动和冲击的能力,寻找其薄弱环节和浪费环节,为改进设计提供依据。还可建立用模态参数表示的机械系统的运动方程,称为模态分析。③ 分析计算机械设备的动力稳定性,确定机械设备不稳定,即产生自激振动的临界条件。保证机械设备在充分发挥其性能的条件下不产生自激振动,并能稳定的工作。
振动分析仪可以对振动信号的频谱进行分析。
防振措施
设计机械设备时,应周密地考虑所设计的对象会出现何种振动:是线性振动还是非线性振动;振动的程度;把振动量控制在允许范围内的方法。这是决定设计方案时需要解决的问题。已有的机械设备出现超过允许范围的振动时,需要采取减振措施。为了减小机械设备本身的振动,可配置各类减振器。为减小机械设备振动对周围环境的影响,或减小周围环境的振动对机械设备的影响,可采取隔振措施。系统受到瞬态激励时,它的力、位移、速度、加速度发生突然变化的现象,称为冲击。一般机械设备经受得起微弱的冲击,但经受不起强烈的冲击。为了保护机械设备不致于受强烈冲击而破坏,可采取缓冲措施,以减轻冲击的影响。如飞机着落时,轮胎、起落架和缓冲支柱等分别承受和吸收一部分冲击能量,借以保护飞机安全着陆。减小机械噪声的根本途径主要在于控制噪声源的振动,在需要的场合,也可配置消声器。
振动研究
自从应用机械阻抗、系统识别和模态分析等技术以来,人们已成功地解决了许多复杂的振动问题。在已知激励的情况下,设计系统的振动特性,使它的响应满足所需要求,称为振动设计。在已知系统的激励和响应的条件下研究系统的特性,即用实验数据与数学分析相结合的方法确定振动系统的数学模型,称为系统识别。若已知机械结构运动方程的一般形式,系统识别则简化为参数识别。参数识别可以在频域内进行,也可以在时域内进行,有的则需要在频域和时域内同时进行。在已知系统的特性和响应的条件下研究激励,称为环境预测。振动设计、系统识别和环境预测三者可以概括为现代振动研究的基本内容。在机械工程领域内,为确保机械设备安全可靠地运行,机械结构的振动监控和诊断也引起人们的重视。在研究方法上,振动测试是与理论分析计算结合采用的。
共振
两个振动频率相同的物体,当其中一个振动时,另一个也会振动起来,这就是共振,共振的结果是共鸣!就是一起振动导致一起发声。
共振是指机械系统所受激励的频率与该系统的某阶固有频率相接近时,系统振幅显著增大的现象。共振时,激励输入机械系统的能量最大,系统出现明显的振型。在机械振动中,常见的激励有直接作用的交变力,支承或地基的振动与旋转件的不平衡惯性力等。
共振时,激励输入机械系统的能量最大,系统出现明显的振型,称为位移共振。此外还有在不同频率下发生的速度共振和加速度共振。
在机械振动中,常见的激励有直接作用的交变力,支承或地基的振动与旋转件的不平衡惯性力等。共振时的激励频率称为共振频率,近似等于机械系统的固有频率。对于单自由度系统,共振频率只有一个,当对单自由度线性系统作频率扫描激励试验时,其幅频响应图(见图)上出现一个共振峰。对于多自由度线性系统,有多个共振频率,激励试验时相应出现多个共振峰。对于非线性系统,共振区出现振幅跳跃现象,共振峰发生明显变形,并可能出现超谐波共振和次谐波共振。共振时激励输入系统的功同阻尼所耗散的功相平衡,共振峰的形状与阻尼密切相关。
在一般情况下共振是有害的,会引起机械和结构很大的变形和动应力,甚至造成破坏性事故,工程史上不乏实例。防共振措施有:改进机械的结构或改变激励,使机械的固有频率避开激励频率;采用减振装置;机械起动或停车过程中快速通过共振区。另一方面,共振状态包含有机械系统的固有频率、最大响应、阻尼和振型等信息。在振动测试中常人为地再现共振状态,进行机械的振动试验和动态分析。此外,利用共振原理的振动机械,可用较小的功率完成某些工艺过程,如共振筛等。
******************************************************************************************************************************************
机械振动与噪音
1. 机械或结构在平衡位置附近的往复运动即机械振动。即:位置的往复运动。
2. 机械振动有四种分类方法: ① 按确定瞬时位置所需要的独立坐标数目可分成三种:单自由度系统振动、多自由度系统振动、连续系统振动(无穷多个自由度的系统振动)。 ② 按振动系统所受的激励形式可分为三种:自由振动(系统在初始干扰或原始的外激励撤消后的振动)、受迫振动(在外激励始终作用下的振动)、自激振动(在自身内部产生的激励作用下的振动)。 ③ 按振动规律分为四类:简谐振动(位置是时间的正弦或余弦函数)、周期振动(位置是按时间间隔呈现周期性重复,简谐振动是周期振动的一种)、瞬态振动(无周期的即振即衰运动)、随机振动(具体位置无法确定的但位置的范围可界定的振动)。 ④ 按描述系统(随机振动系统除外)的微分方程形式分为两种:线性振动、非线性振动。 3. 振动系统的三要素:外界激励、系统参数、系统响应。 4. 三类机械振动问题及其解决方法: ① 响应分析——已知系统参数和外界激励,求解系统的响应(如:位移、速度、加速度、力); ② 系统设计和系统辩识——已知外界激励和系统响应,求解系统参数。系统设计是指系统不存在,需要根据已知的系统激励和响应来设计合理的系统参数;而系统辩识是指系统已经存在,需要根据已测量获得的系统激励和响应来识别系统参数,以作进一步的研究; ③ 环境预测——已知系统响应和系统参数,确定外界激励及系统周围的环境。 5.解决振动问题的两种方法:理论分析方法、试验研究方法(充分地使用测试和分析仪器)。 6. 声学的研究领域包括五个方面:声波的产生、传播、接受、效应、控制。 7.机械噪声分两类:机械或结构振动噪声、流体动力性噪声。 8. 噪声控制的三个环节:声源、路径、受者(如:人、生物、仪器设备、建筑物)。 9. 噪声控制之最根本、最经济、最有效的方法是:对噪声源本身的控制——这首先需要准确无误地识别出主要的噪声源。 10. 低噪音结构设计的八种方法:① 用连续运动代替不连续运动,以减少运动部件之间的撞击;② 改变接触部件之表面的材料特性,在接触表面采用软材料以延长力的作用时间;③ 改善运动部件的平衡,或避免高转速、高加速度,以减少旋转失衡引起的振动;④ 以液压或气压代替机械力的传递;⑤ 管道的进出口要有足够的截面以保持较低的速度;⑥ 流体管道内形状、光洁度要适合于流动且无障碍,管道之间要光滑过度、弯头半径尽量取最大值;⑦ 尽量应用比重大和阻尼高的材料(如:橡胶、塑料);⑧ 提高相互滑动或滚动的表面加工精度。 11. 被动减振的方法有三种(适合于结构修改有困难时使用):① 使用动力吸振器;② 将机械-基础系统的固有频率与外激振力的频率错开;③ 增加结构中的阻尼。12.主动减振的两方法:① 首先找到主要的振源,再消除它或有效的减少它的振动强度或它向外辐射的面积(如振源为大面积的板件时,可改为开孔板或以金属网络代替)。② 使用电子装置产生一个与噪声源相位相反的声波,通过声波干涉来抵消噪声源。 13.噪声控制的另一个环节是:限制和改变噪声的传播途经,使噪声一经传播便迅速衰竭。 14.当上述所有的噪声控制方法都不能奏效时,则只能从保护噪声的受者方面着想。 15.简谐振动的三种表示方法:代数表示法、矢量表示法、复数表示法。 16.振动系统之力学模型的三种元件:质量元件、弹性元件、阻尼元件。 17. 阻尼(Damping)可分为两类: (阻尼也指摩擦时需要稳定的时间,或指针万用表表针稳定住的时间) ① 摩擦阻尼:因摩擦阻力而生热,使系统的机械能减小,转化为内能; ② 辐射阻尼:系统引起周围质点的震动,使系统的能量逐渐向四周辐射出去,变为波的 能量。 18. 阻尼的五大效用: (1)阻尼有助于减少机械结构的共振振幅,从而避免结构因震动应力达到极限造成机构破坏; (2)阻尼有助于机械系统受到瞬时冲击后,很快恢复到稳定状态; (3)阻尼有助于减少因机械振动产生的声辐射,降低机械性噪声。许多机械构件,如交通运输工具的壳体、锯片的噪声,主要是由振动引起的,采用阻尼能有效的抑制共振,从而降低噪声; (4)可以提高各类机床、仪器等的加工精度、测量精度和工作精度。各类机器尤其是精密机床,在动态环境下工作需要有较高的抗震性和动态稳定性,通过各种阻尼处理可以大大的提高其动态性能; (5)阻尼有助于降低结构传递振动的能力。在机械系统的隔振结构设计中,合理地运用阻尼技术,可使隔振、减振的效果显著提高。 19. 描述振动系统固有特性的两个参数(两者都可用实验方法测定): ① 阻尼比、 ② 固有频率(共振频率、临界转速)。 20.隔振即在振动源(设备或结构)和其它物体之间用弹性装置或阻尼装置连接,使振动源产生的大部分振动能量由减振装置吸收。 21.振动控制即采用某种措施使振动系统在动力系统的作用下的响应不超过某一限量。转自:http://blog.sina.com.cn/s/blog_548f1a0501018lod.html
{:{39}:} 感谢楼主分享
页:
[1]