关于短时傅里叶变换的加窗问题
短时傅里叶变换属于线性时频表示,没有交叉项干扰,在很多场合中应用还是很方便的,虽然时频聚集性没有WVD好,此外,由于HHT方法的局限性,在适当的场合利用下短时傅里叶变换还是很有效果的,另外也可作为与其他方法的一个比对。如果利用时频工具箱的处理函数tfrstft,默认的滤波加窗宽度=数据长度/4,这很容易理解,T*B=1/4的时候具有最好的时频聚集性,但是,如果数据长度不是2的指数次方,此时默认窗宽度就有问题了,我目前的思路是窗宽度取接近数据长度的最小的2的指数次方的1/4*pi,这样获得的效果是最好的。
不知道还有没有其他更好的方法,欢迎讨论交流!
这两天又对该问题进行了资料搜集,验证了我的想法,但是即使是按照这种方法做,也仍然脱离不了不确定性原理的束缚,而其对于滤波窗的问题,已经有了研究的先例,大家可以参考 ASTFT(自适应短时傅里叶变换)和分数间隔傅里叶变换,似乎得到的结果都不错。
转自:http://blog.sina.com.cn/s/blog_5def5a660100dc8p.html
你的意思是数据分段分不匀称吗?
如果是这个问题,整个数据的长度只需是4的倍数就可以了呀,哪里用得着2的幂呢? 原理呢? 本帖最后由 红轮 于 2016-5-15 22:17 编辑
感觉和welch法计算PSD差不多吧, 有时试验数据量很大,采样率又固定的时候,分4段岂不分辨率太高?结果毛刺太多,反而看不出个123,感觉分2的整数幂是为了FFT效率高,但NFFT可以大于window啊? 超过的补零就OK了,望高手解惑?
stft得出的结果也是功率谱密度吗?不是分段进行FFT?
页:
[1]