KMeans和KMedoid 的Matlab实现
KMeans和KMedoid算法是聚类算法中比较普遍的方法,本文讲了其原理和matlab中实现的代码。1.目标: 找出一个分割,使得距离平方和最小
2.K-Means算法: 1. 将数据分为k个非空子集 2. 计算每个类中心点(k-means中用所有点的平均值,K-medoid用离该平均值最近的一个点)center 3. 将每个object聚类到最近的center 4. 返回2,当聚类结果不再变化的时候stop
复杂度: O(kndt) -计算两点间距离:d -指定类:O(kn) ,k是类数 -迭代次数上限:t
3.K-Medoids算法: 1. 随机选择k个点作为初始medoid 2.将每个object聚类到最近的medoid 3. 更新每个类的medoid,计算objective function 4. 选择最佳参数 4. 返回2,当各类medoid不再变化的时候stop
复杂度: O((n^2)d) -计算各点间两两距离O((n^2)d) -指定类:O(kn) ,k是类数
4.特点: -聚类结果与初始点有关(因为是做steepest descent from a random initial starting oint) -是局部最优解 -在实际做的时候,随机选择多组初始点,最后选择拥有最低TSD(Totoal Squared Distance)的那组
Kmeans KMedoid Implementation with matlab:===================下面是我用matlab上的实现:说明:fea为训练样本数据,gnd为样本标号。算法中的思想和上面写的一模一样,在最后的判断accuracy方面,由于聚类和分类不同,只是得到一些 cluster ,而并不知道这些 cluster 应该被打上什么标签,或者说。由于我们的目的是衡量聚类算法的 performance ,因此直接假定这一步能实现最优的对应关系,将每个 cluster 对应到一类上去。一种办法是枚举所有可能的情况并选出最优解,另外,对于这样的问题,我们还可以用 Hungarian algorithm 来求解。具体的Hungarian代码我放在了资源里,调用方法已经写在下面函数中了。下面给出Kmeans&Kmedoid主函数。
Kmeans.m 函数:<font color="#000000"> view plaincopyprint?
function [ accuracy,MIhat ] = KMeans( K,mode )
% Artificial Intelligence & Data Mining - KMeans & K-Medoids Clustering
% Author: Sophia_qing @ ZJU
% CreateTime: 2012-11-18
% Function: Clustering
%-K: number of clusters
%-mode:
% 1: use kmeans cluster algorithm in matlab
% 2: k_medroid algorithm: use data points as k centers
% 3: k_means algorithm: use average as k centers
global N_features;
global N_samples;
global fea;
global gnd;
switch (mode)
case 1 �ll system function KMeans
label = kmeans(fea,K);
= cal_accuracy(gnd,label);
case 2%use kmedroid method
for testcase = 1:10% do 10 times to get rid of the influence from Initial_center
K_center = Initial_center(fea,K); %select initial points randomly
changed_label = N_samples;
label = zeros(1,N_samples);
iteration_times = 0;
while changed_label~=0
cls_label = cell(1,K);
for i = 1: N_samples
for j = 1 : K
D(j) = dis(fea(i,:),K_center(j,:));
end
[~,label(i)] = min(D);
cls_label{label(i)} = ;
end
changed_label = 0;
cls_center = zeros(K,N_features);
for i = 1 : K
cls_center(i,:) = mean(fea(cls_label{i},:));
D1 = [];
for j = 1:size(cls_label{i},2)%number of samples clsutered in i-th class
D1(j) = dis(cls_center(i,:),fea(cls_label{i}(j),:));
end
[~,min_ind] = min(D1);
if ~isequal(K_center(i,:),fea(cls_label{i}(min_ind),:))
K_center(i,:) = fea(cls_label{i}(min_ind),:);
changed_label = changed_label+1;
end
end
iteration_times = iteration_times+1;
end
= cal_accuracy(gnd,label);
end
accuracy = max(acc);
case 3%use k-means method
for testcase = 1:10% do 10 times to get rid of the influence from Initial_center
K_center = Initial_center(fea,K); %select initial points randomly
changed_label = N_samples;
label = zeros(1,N_samples);
label_new = zeros(1,N_samples);
while changed_label~=0
cls_label = cell(1,K);
changed_label = 0;
for i = 1: N_samples
for j = 1 : K
D(j) = dis(fea(i,:),K_center(j,:));
end
[~,label_new(i)] = min(D);
if(label_new(i)~=label(i))
changed_label = changed_label+1;
end;
cls_label{label_new(i)} = ;
end
label = label_new;
for i = 1 : K%recalculate k centroid
K_center(i,:) = mean(fea(cls_label{i},:));
end
end
= cal_accuracy(gnd,label);
end
accuracy = max(acc);
end
MIhat = MutualInfo(gnd,label);
function center = Initial_center(X,K)
rnd_Idx = randperm(N_samples,K);
center = X(rnd_Idx,:);
end
function res = dis(X1,X2)
res = norm(X1-X2);
end
function = cal_accuracy(gnd,estimate_label)
res = bestMap(gnd,estimate_label);
acc = length(find(gnd == res))/length(gnd);
end
end
实验结果分析:
对上面得到的accuracy进行画图,横坐标为10个数据集,纵坐标为在其上进行聚类的准确率。
其中,auto为matlab内部kmeans函数。
画图:
view plaincopyprint?
function [] = Plot( A,B,C )
%PLOT Summary of this function goes here
% Detailed explanation goes here
figure;
k = 1:10;
plot(k,A,'-r',k,B,'-b',k,C,'-g');
legend('auto','medoid','means');
end
</font>结果:5类聚类:7类聚类:转自:http://blog.sina.com.cn/s/blog_6c41e2f30101c48o.html
页:
[1]