tieyue 发表于 2016-8-25 16:44

倒频谱分析理论及案例

声明:这篇文章并不是我原创的,我只是稍加整理。现在的振动分析好多资料特别的乱,我从现在开始把我收集到的资料及案例进行整理。同步整理到我的微信公众号上,微信公众号:风电故障诊断及振动分析

1.倒频谱的数学描述

倒频谱函数CF(q)(power cepstrum)其数学表达式为:

CF(q)又叫功率倒频谱,或叫对数功率谱的功率谱。工程上常用的是上式的开方形式,即:

C0(q)称为幅值倒频谱,有时简称倒频谱。

2.倒频谱变量q的物理意义
为了使其定义更加明确,还可以定义:

即倒频谱定义为信号的双边功率谱对数加权,再取其傅里叶逆变换,联系一下信号的自相关函数:


可以看出,这种定义方法与自相关函数很相近,变量q与τ在量纲上完全相同。

为了反映出相位信息,分离后能恢复原信号,又提出一种复倒频谱的运算方法。

若信号x(t)的傅里叶变换为X(f):

x(t)的倒频谱记为:

显而易见,它保留了相位的信息。

倒频谱与相关函数不同的只差对数加权,目的是使再变换以后的信号能量集中,扩大动态分析的频谱范围和提高再变换的精度。还可以解卷积(褶积)成分,易于对原信号的分离和识别。

3. 倒频谱的应用

图2.26对数功率谱关系图。在机械状态监测和故障诊断中,所测得的信号,往往是由故障源经系统路径的传输而得到的响应,也就是说它不是原故障点的信号,如欲得到该源信号,必须删除传递通道的影响。如在噪声测量时,所测得之信号,不仅有源信号而且又有不同方向反射回来的回声信号的混入,要提取源信号,也必须删除回声的干扰信号。若系统的输入为x(t),输出为y(t),脉冲响应函数是h(t),两者的时域关系为: y(t)=x(t)*h(t)
频域为: Y(f)=X(f)*H(f)或Sy(f)=Sx(f)*|H(f)|2
对上式两边取对数,则有:
(2.72)

式(2.72)关系如图(2.26)所示,源信号为具有明显周期特征的信号,经过系统特性logGk(f)的影响修正,合成而得输出信号logGy(f)。
对于(2.72)式进一步作傅里叶变换,即可得幅值倒频谱:

即:

以上推导可知,信号在时域可以利用x(t)与h(t)的卷积求输出;在频域则变成X(f)与H(f)的乘积关系;而在倒频域则变成Cx(q)和Ch(q)相加的关系,使系统特特性Ch(q)与信号特性Cx(q)明显区别开来,这对清除传递通道的影响很有用处,而用功率谱处理就很难实现。

图(2.26b)即为相应的倒频谱图。从图上清楚地表明有两个组成部分:一部分是高倒频率q2,反映源信号特征;另一部分是低倒频率q1,反映系统的特性。两部分在倒频谱图上占有不同的倒频率范围,根据需要可以将信号与系统的影响分开,可以删除以保留源信号。

3.用倒频谱诊断齿轮故障
对于高速大型旋转机械,其旋转状况是复杂的,尤其当设备出现不对中,轴承或齿轮的缺陷、油膜涡动、磨擦、陷流及质量不对称等现象时,则振动更为复杂,用一般频谱分析方法已经难于辩识(识别反映缺陷的频率分量),而用倒频谱,则会增强识别能力。

如一对工作中的齿轮,在实测得到的振动或噪声信号中,包含着一定数量的周期分量。如果齿轮产生缺陷,则其振动或噪声信号还将大量增加谐波分量及所谓的边带频率成分。

什么叫边带频率,它又是如何产生的?

设在旋转机械中有两个频率w1 与w2 存在,在这二频率的激励下,机械振动的响应呈现出周期性脉冲的拍,也就是呈现其振幅以差频( (w2 -w1)设w2>w1 )进行幅度调制的信号,从而形成拍的波形,这种调幅信号是自然产生的。例如调幅波起源于齿轮啮合频率(齿数×轴转数)w0的正弦载波,其幅值由于齿轮之偏心影响成为随时间而变化的某一函数Sm(t) ,于是:


假设齿轮轴转动频率为wm ,则可写成:
(2.76)

其图形如图(2.27a)所示,看起来象一周期函数,但实际上它并非是一个周期函数,除非w0 与wm成整倍数关系,这在实际应用中,这种情况并不多见。根据三角半角关系, (2.76)式可写成:


从(2.77)式不难看出,它是由w0,(w0 +wm)与(w0-wm )三个不同的正弦波之和,具有如图2.27b)之频谱图。这里(w0 -wm )与(w0 +wm )之差频与和频通称为边带频率。

假如上例中对于一个具有四个轮幅的100个齿的齿轮,其轴准转数为50转/秒,而其啮合频率5000Hz。其幅值(啮合力的大小) 则由每转四次的周期为200HZ所调制(因为有四个轮幅的影响)。所以在测得的振动分量中,不仅有明显的轴转数50HZ及啮合频率(5000HZ) 外,还有4800HZ及5200HZ的边带频率。

实际上,如果齿轮缺陷严重或多种故障存在,以致许多机械中经常出现的不对准、松动、及非线性刚度等原因,或者出现拍波截断等原因时,则边带频率将大量增加。

在一个频谱图上出现过多的频差,难以识别,而倒频谱图则有利于识别,如图2.28所示。图(a)是一个减速箱的频谱图,图(b)是它的倒频谱图。从倒谱图上清楚地看出,有两个主要频率分量:117.6Hz(85ms)及48.8Hz(20.5ms)。
                                                                                                                                                               

怪咖先生 发表于 2016-8-26 09:20

这是论文吗?

drownedfish 发表于 2016-8-26 11:27

感谢楼主整理,如有需要,一起学习整理

eastar 发表于 2016-8-29 13:24

感谢分享啊

jiangwj 发表于 2016-9-6 12:52

值得学习有好处

vibmaster 发表于 2016-9-7 09:04

总结的不错

jjff 发表于 2016-9-13 09:32

挺好,挺实用的东西,谢谢

william 发表于 2016-9-14 08:13

谢谢楼主学习了

dqwanglei 发表于 2016-10-11 22:17


挺好,挺实用的东西,谢谢

jiangwj 发表于 2016-10-12 08:14

看过学习了

MrLiu 发表于 2017-12-12 18:35

楼主的倒频谱函数公式是不是写错了……不是对自功率谱的对数值求傅立叶逆变换么???

wmzzp321 发表于 2018-11-18 18:25

很好

....
页: [1]
查看完整版本: 倒频谱分析理论及案例