科学理论的创新越来越难:评N-S方程
接触流体力学的人都很清楚,纳维-斯托克斯方程(即N-S方程)是一组描述粘性流体运动的方程。这组方程的提出者,为法国物理学家Claude-Louis Navier (1785-1836) 和英国科学家George Gabriel Stokes(1819-1903)。绝大多数物理学家相信,湍流的复杂性应该就隐藏在N-S方程的解里面,但它在三维空间的严格解还没有找到(图1)。这个解的难度同样吸引了数学和计算科学等领域的高度关注。图1 美国Clay数学研究所网站将N-S方程列为“未解决”问题(截图)
回顾一下历史。自牛顿提出的科学原理被广泛接受之后,流体力学的发展进入了快车道,其中大神级科学家欧拉 (Euler,1707-1783) 做出了重大贡献。他创立我们今天称为“物质导数”的概念,提出了描述流体运动的欧拉法(与拉格朗日法并列为流体运动的两种描述方法),并在1775年推导出流体动力学的欧拉方程。这就是N-S方程的前身。不过,欧拉方程是不够彻底的,没有继承牛顿提出的内摩擦定律,即忽略了流体的粘性。作为材料力学领域的领军人物,Navier很清楚粘性力的作用,在1821年完成对欧拉方程的改进,引入粘性力。Stokes也在研究这个问题,1845年发表论文《On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids》,推导出一组考虑粘滞力的流体动力学方程。两人的研究是相互独立的,因此科学界将其称为Navier-Stokes方程。现代形式的可压缩流体三维N-S方程包含了1个连续性方程、3个动量方程和1个能量方程(图2),另外,压强与密度的关系还需要使用流体本构方程。
图2 NASA网站提供的现代形式N-S方程组(截图)
那么,提出N-S方程是一种什么样的创新工作呢?
首先,N-S方程是对欧拉方程的改进,不是从0到1的创新。如何改进欧拉方程算是19世纪初的一个重大科学问题,因为流体的粘滞性早在牛顿时代就是一个知识点,但没有被包含在欧拉方程里面。欧拉本人应该也知道粘性问题,但没有关心它,做了无粘性假设使问题简单一些。另一种可能,是欧拉不太熟悉剪切力的表达方式。Navier和Stokes是幸运的,因为神人欧拉竟然留了一个漏洞给他们修补。从原创的角度看,做N-S方程的创新性比提出欧拉方程要差一些。只要将粘滞力理解为一种剪应力,改进欧拉方程的难度并不特别大。我这只是给出了相对意义上的判断,并非故意贬低Navier和Stokes的研究。实际上这两位都是科学史上的大牛。
其次,提出N-S方程几乎是一种纯理论创新。Navier和Stokes只是站在欧拉这个巨人的肩膀上,借用牛顿关于粘滞力的假设,进行一番推导之后写出了改进的偏微分方程。他们并没有获得这个方程的解,也没有用它直接解决什么重大实际问题。也许,对于他们而言,最高的研究目标是填补欧拉留下的理论漏洞。在如今“实证主义”盛行的时代,科学界正在抛弃这种假设演绎法(反而热情拥抱归纳法!),搞理论创新的论文越来越难以发表。我有点怀疑,当“大胆假设、小心求证”逐渐变为“不停求证、不敢假设”的时候,科学是否会进入脑死亡状态。
最后,N-S方程的历史地位是提出者没有想到的。有一件事情很清楚,改进欧拉方程的工作,只是Navier和Stokes科研兴趣中的一个点而已,他们还做了很多其它闪亮的研究。比如,他们的主攻方向都是弹性力学,而Stokes还钻研数学问题。我想他们不会料到,仅仅是增加了粘性,就使流体动力学行为远远超出了欧拉方程所能反映的复杂程度,也应该不会料到150多年后数学家还没有获得N-S方程的严格解。如果欧拉的工作更扎实一点,这个粘性作用在1800年之前就可以加入到方程里面,成为人类200多年不能解决的问题。另外一个结果也是有趣的:在此之后,人们再也没有提出能够显著超越N-S方程的流体动力学方程,只是做了一些轻微的修补工作。如今,大量的科学精力被用于N-S方程的近似解(主要与湍流相关)和CFD数值法求解(工程应用),另外有大量的数学家在绞尽脑汁试图证明或否证N-S方程具有光滑解。
以上情况,让我想起地下水科学的历史。地下水渗流理论的第一个定律,即Darcy定律 (1856),是实验统计的产物(归纳法)。之后,Dupuit公式 (1863)、Boussinesq方程 (1904)、Theis公式 (1935)、Boulton模型 (1963)和Tóth模型(1963) 等都属于理论创新的产物(假设演绎法)。1970年代以来,地下水数值模拟技术越来越普及,就很少有人再去研究什么方程、公式之类,即使弄出一些改进也被认为是无足轻重的。越来越多的同行只懂得一点肤浅的流体动力学知识(全世界如此!)。目前,Boussinesq方程的非线性行为并没有完全弄清楚,方程本身背后的物理假设也有不少漏洞,却极少有人愿意去做相关的理论研究。地下水的工程技术环节,似乎越来越不需要那些所谓高深的理论。其它方面的地下水研究当然更强烈的依赖于实验统计、分析测试和遥感地理技术。
地下水科学是不是已经“脑死亡”?这个我不敢妄加揣测。但是,归纳法大行其道,假设演绎法寸步难行,已经是不争的事实。退回到以归纳法为主的“培根时代”,一门科学还会有伟大的创新吗?
来源:王旭升科学网博客,作者:王旭升。
页:
[1]