ANSYS谐响应结果调入virtual lab中报错
按照“利用ANSYS谐响应分析结果导入LMS Virtual lab中进行声学分析步骤”里面的步骤操作,更新“Acoustic Mesh Preprocessing Set.1”的时候报错如下,改成间接边界元仍有这个错误,我怀疑是否与ANSYS剖分网格有关系,各位大神有知道怎么解决的嘛?
具体错误如下:
Detecting junctions and free edges...
ERROR: Problem occurred in junction detection.
The mesh topology might be incorrect: please check the connectivities of elements 21022 and 21024!
WARNING: The acoustic model contains junctions.
WARNING: This model is not suitable for BEM Direct Analysis.
Please set Model Type Definition to BEM Indirect Analysis.
Errors = 1; Warnings = 4  需要可以联系 我最近也遇到这类问题,直接删除报错的两个单元后再处理还是报错,我推测是结构模型的问题。
你可以尝试一下把结构分解成两个文件分别导入。 请问楼主现在知道具体步骤了吗,可否指点一下,可有偿
页:
[1]