christy 发表于 2005-9-26 20:54

[转帖]离散格式

插值方式常成为离散格式。<br>就我们比较熟悉的离散格式来介绍一下。<br><STRONG>中心差分格式</STRONG>:就是界面上的物理量采用线性插值公式来计算,即取上游和下游节点的算术平均值。它是条件稳定的,在网格Pe数小于等于2时稳定。在不发生振荡的参数范围内,可以获得较准确的结果。<br>如没有特殊声明,扩散项总是采用中心差分格式来进行离散。<br><br><STRONG>一阶迎风格式:</STRONG> 即界面上的未知量恒取上游节点(即迎风侧节点)的值。这种迎风格式具有一阶截差,因此叫一阶迎风格式。无论在任何计算条件下都不会引起解的振荡,是绝对稳定的。但是当网格Pe数较大时,假扩散严重,为避免此问题,常需要加密网格。研究表明,在对流项中心差分的数值解不出现振荡的参数范围内,在相同的网格节点数条件下,采用中心差分的计算结果要比采用一阶迎风格式的结果误差小。<br><br><STRONG>混合格式:</STRONG>综合了中心差分和迎风作用两方面的因素,当|Pe|&lt;2时,使用具有二阶精度的中心差分格式;当|Pe|&gt;=2时,采用具有一阶精度但考虑流动方向的一阶迎风格式。该格式综合了中心差分格式和一阶迎风格式的共同的优点,其离散系数总是正的,是无条件稳定的。计算效率高,总能产生物理上比较真实的解,但缺点是只有一阶精度。<br><br><STRONG>二阶迎风格式</STRONG>:二阶迎风格式与一阶迎风格式的相同点在于,二者都通过上游单元节点的物理量来确定控制体积界面的物理量。但二阶格式不仅要用到上游最近一个节点的值,还有用到另一个上游节点的值。它可以看作是在一阶迎风格式的基础上,考虑了物理量在节点间分布曲线的曲率影响。在二阶迎风格式中,只有对流项采用了二阶迎风格式,而扩散项仍采用中心差分格式。二阶迎风格式具有二阶精度的截差。<br><br><STRONG>QUICK格式:</STRONG>是“对流项的二次迎风插值”,是一种改进离散方程截差的方法,通过提高界面上插值函数的阶数来提高格式截断误差的。对流项的QUICK格式具有三阶精度的截差,但扩散项仍采用二阶截差的中心差分格式。对于与流动方向对齐的结构网格而言,QUICK格式将可产生比二阶迎风格式等更精确的计算结果。QUICK格式常用于六面体(二维中四边形)网格。对于其它类型的网格,一般使用二阶迎风格式。<br><br>推荐:在陶文铨第二版的数值传热学里有详细的介绍。
[此贴子已经被作者于2005-9-26 20:55:23编辑过]
页: [1]
查看完整版本: [转帖]离散格式