pjfly 发表于 2008-4-5 13:18

分岔-bifurcation

分岔-bifurcation

动力学系统的参量值跨越临界值(分岔值)所导致稳定定常状态定性变化的现象 。又称分岔。
这术语是19世纪末H.庞加莱研究天体起源时引进的。一团旋转流体角速度ω有一分岔值ω*,在ω>ω*情况中,液体有一稳定平衡态(形状),而在ω<ω*情况中,这个平衡态失去稳定性 ,液体最终趋于另一稳定平衡态,这一分岔现象可用以解释天体某种形状的起源。力学中研究过的最早的分岔例子是18世纪L.欧拉考虑的细压杆屈曲。如取轴向力大小 P 为参量,欧拉临界力P * 是一分岔值。在P<P * 情况,细杆只有一个稳定平衡态 (不弯曲),而在 P> P *情况下,它失去稳定性 ,细杆有两个新的稳定平衡态,它最终将趋于其中的一个(向一侧弯曲)。
    动力学系统的稳定定常状态除平衡态外,还有周期态即振动,以及略为复杂些的准周期态。参量跨越分岔值(无论由大到小或由小到大)有时引起系统( 稳定)平衡态换成(稳定)周期态(或相反由周期态到平衡态),这种分岔20世纪 30 年代 A.A.安德罗诺夫在分析自激振动中详细研究过,但在文献中通常称为E.霍甫分岔(40年代)。
   60年代以后的研究表明,动力学系统的稳定定常态除平衡、周期、准周期各态外,更可能是另一种——混沌态,即确定性系统由于初态敏感性而产生的随机状态。因而在一般意义的分岔现象中,系统参量跨越分岔值导致系统中定态的转化可能是多种多样的:一种平衡到另一种平衡,振动到混沌,准周期到混沌,混沌到准周期,甚至混沌到另一种混沌,等等。与混沌出现有关的分岔称为同宿分岔。流体动力学中的湍流是比混沌更为复杂的运动状态。流体流动中由层流向湍流的转捩可以用分岔理论得到部分解释。
页: [1]
查看完整版本: 分岔-bifurcation