求助:fmincon函数,出现RCOND = NaN得不到解
目标函数为:function f=myfun(x)
f(1)=-((1.2723-2.7645*10^(-4)*x(1))+((8.3144*x(1))/(2.0*96487))*log(((0.17*(3.0*x(4)+x(5))/(3.23092*x(2)+2.0*x(4)))*0.1426*10^6*sqrt((3*x(2)-0.5*x(3))/((3.0*x(2)/0.21)-0.5*x(3))*0.1426*10^6))/(((2.2*x(2)-x(4)-x(5)+x(3))/(3.23092*x(2)+2.0*x(4)))*0.1426*10^6))-...
((8.3144*x(1)*(x(3)*2.0*96487)/(50000*0.026))/(2*96487*5.5*10^8*(((0.17*(3.0*x(4)+x(5)))/(3.23092*x(2)+2.0*x(4)))*0.1426*10^6/100000)*(((2.2*x(2)-x(4)-x(5)+x(3))/(3.23092*x(2)+2*x(4)))*0.1426*10^6/100000)*exp(-10^5/(8.314*x(1)))))-...
(((8.3144*x(1))/(0.5*2.0*96487))*(log((x(3)*2*96487)/(50000*0.026))-log(7.0*10^8*(((3*x(2)-0.5*x(3))/((3*x(2)/0.21)-0.5*x(3))*0.1426*10^6/100000)^0.25)*exp((-120*10^3)/(8.314*x(1))))))-...
(((x(3)*2.0*96487)/(50000*260))*((2.94*10^(-5)*exp(10350/x(1))*100*0.004)+(0.02*3.14*(1.256*10^(-4)*exp(4690/x(1)))*100*0.0002/0.0002)+((3.14^2*2.0*0.02/8)*((8.11*10^(-5)*exp(600/x(1))*100/0.2)+(2.98*10^(-5)*(1392/x(1))*100/0.001))))));
约束函数为:
function =mycon(x)
ceq(1)=((22.26*(x(10)-x(11))+2.9905*10^(-2)*(x(10)^2-x(11)^2)-1.167*10^(-5)*(x(10)^3-x(11)^3)+1.9365*10^(-9)*(x(10)^4-x(11)^4))*(x(2)+0.01546*x(2))+...
(25.48*(x(10)-x(11))+0.76*10^(-2)*(x(10)^2-x(11)^2)-0.2385*10^(-5)*(x(10)^3-x(11)^3)+0.328*10^(-9)*(x(10)^4-x(11)^4))*x(2)+...
(32.24*(x(10)-x(11))+0.09615*10^(-2)*(x(10)^2-x(11)^2)+0.3517*10^(-5)*(x(10)^3-x(11)^3)-0.89875*10^(-9)*(x(10)^4-x(11)^4))*(2.2*x(2)+2*x(2))+...
(28.90*(x(10)-x(11))-0.07855*10^(-2)*(x(10)^2-x(11)^2)+0.2694*10^(-5)*(x(10)^3-x(11)^3)-0.71825*10^(-9)*(x(10)^4-x(11)^4))*(11.2857*x(2)+0.01546*x(2)))*0.99-...
415.943*x(2)*(x(9)-341.05);
ceq(2)=((22.26*(x(11)-x(12))+2.9905*10^(-2)*(x(11)^2-x(12)^2)-1.167*10^(-5)*(x(11)^3-x(12)^3)+1.9365*10^(-9)*(x(11)^4-x(11)^4))*(x(2)+0.01546*x(2))+...
(25.48*(x(11)-x(12))+0.76*10^(-2)*(x(11)^2-x(12)^2)-0.2385*10^(-5)*(x(11)^3-x(12)^3)+0.328*10^(-9)*(x(11)^4-x(12)^4))*x(2)+...
(32.24*(x(11)-x(12))+0.09615*10^(-2)*(x(11)^2-x(12)^2)+0.3517*10^(-5)*(x(11)^3-x(12)^3)-0.89875*10^(-9)*(x(11)^4-x(12)^4))*(2.2*x(2)+2*x(2))+...
(28.90*(x(11)-x(12))-0.07855*10^(-2)*(x(11)^2-x(12)^2)+0.2694*10^(-5)*(x(11)^3-x(12)^3)-0.71825*10^(-9)*(x(11)^4-x(12)^4))*(11.2857*x(2)+0.01546*x(2)))*0.99-...
((22.26*(x(6)-332.39)+2.9905*10^(-2)*(x(6)^2-332.39^2)-1.167*10^(-5)*(x(6)^3-332.39^3)+1.9365*10^(-9)*(x(6)^4-332.39^4))*0.01546*x(2)+...
(28.90*(x(6)-332.39)-0.07855*10^(-2)*(x(6)^2-332.39^2)+0.2694*10^(-5)*(x(6)^3-332.39^3)-0.71825*10^(-9)*(x(6)^4-332.39^4))*0.01546*x(2)+...
(19.87*(x(6)-332.39)+2.512*10^(-2)*(x(6)^2-332.39^2)+0.423*10^(-5)*(x(6)^3-332.39^3)-2.7525*10^(-9)*(x(6)^4-332.39^4))*x(2));
ceq(3)=((22.26*(x(12)-x(13))+2.9905*10^(-2)*(x(12)^2-x(13)^2)-1.167*10^(-5)*(x(12)^3-x(13)^3)+1.9365*10^(-9)*(x(12)^4-x(11)^4))*(x(2)+0.01546*x(2))+...
(25.48*(x(12)-x(13))+0.76*10^(-2)*(x(12)^2-x(13)^2)-0.2385*10^(-5)*(x(12)^3-x(13)^3)+0.328*10^(-9)*(x(12)^4-x(13)^4))*x(2)+...
(32.24*(x(12)-x(13))+0.09615*10^(-2)*(x(12)^2-x(13)^2)+0.3517*10^(-5)*(x(12)^3-x(13)^3)-0.89875*10^(-9)*(x(12)^4-x(13)^4))*(2.2*x(2)+2*x(2))+...
(28.90*(x(12)-x(13))-0.07855*10^(-2)*(x(12)^2-x(13)^2)+0.2694*10^(-5)*(x(12)^3-x(13)^3)-0.71825*10^(-9)*(x(12)^4-x(13)^4))*(11.2857*x(2)+0.01546*x(2)))*0.99-...
(33.499*(273+53.97-298)+2372.3*18+(32.24*(x(8)-326.97)+0.09615*10^(-2)*(x(8)^2-326.97^2)+0.3517*10^(-5)*(x(8)^3-326.97^3)-0.89875*10^(-9)*(x(8)^4-326.97^4)))*2.2*x(2);
ceq(4)=((22.26*(x(7)-x(6))+2.9905*10^(-2)*(x(7)^2-x(6)^2)-1.167*10^(-5)*(x(7)^3-x(6)^3)+1.9365*10^(-9)*(x(7)^4-x(6)^4))*0.01546*x(2)+...
(28.90*(x(7)-x(6))-0.07855*10^(-2)*(x(7)^2-x(6)^2)+0.2694*10^(-5)*(x(7)^3-x(6)^3)-0.71825*10^(-9)*(x(7)^4-x(6)^4))*0.01546*x(2)+...
(19.87*(x(7)-x(6))+2.512*10^(-2)*(x(7)^2-x(6)^2)+0.423*10^(-5)*(x(7)^3-x(6)^3)-2.7525*10^(-9)*(x(7)^4-x(6)^4))*x(2))+...
(32.24*(x(7)-x(8))+0.09615*10^(-2)*(x(7)^2-x(8)^2)+0.3517*10^(-5)*(x(7)^3-x(8)^3)-0.89875*10^(-9)*(x(7)^4-x(8)^4))*2.2*x(2);
ceq(5)=((-74922+(19.87*(x(7)-0)+2.512*10^(-2)*(x(7)^2-0)+0.423*10^(-5)*(x(7)^3-0)-2.7525*10^(-9)*(x(7)^4-0))-...
(19.87*(298-0)+2.512*10^(-2)*(298^2-0)+0.423*10^(-5)*(298^3-0)-2.7525*10^(-9)*(298^4-0)))*x(2)+...
(0+(28.90*(x(7)-0)-0.07855*10^(-2)*(x(7)^2-0)+0.2694*10^(-5)*(x(7)^3-0)-0.71825*10^(-9)*(x(7)^4-0))-...
(28.90*(298-0)-0.07855*10^(-2)*(298^2-0)+0.2694*10^(-5)*(298^3-0)-0.71825*10^(-9)*(298^4-0)))*0.01546*x(2)+...
(0+(28.90*(x(9)-0)-0.07855*10^(-2)*(x(9)^2-0)+0.2694*10^(-5)*(x(9)^3-0)-0.71825*10^(-9)*(x(9)^4-0))-...
(28.90*(298-0)-0.07855*10^(-2)*(298^2-0)+0.2694*10^(-5)*(298^3-0)-0.71825*10^(-9)*(298^4-0)))*11.2857*x(2)+...
(0+(25.48*(x(9)-0)+0.76*10^(-2)*(x(9)^2-0)-0.2385*10^(-5)*(x(9)^3-0)+0.328*10^(-9)*(x(9)^4-0))-...
(25.48*(298-0)+0.76*10^(-2)*(298^2-0)-0.2385*10^(-5)*(298^3-0)+0.328*10^(-9)*(298^4-0)))*3*x(2)+...
(-393791+(22.26*(x(7)-0)+2.9905*10^(-2)*(x(7)^2-0)-1.167*10^(-5)*(x(7)^3-0)+1.9365*10^(-9)*(x(7)^4-0))-...
(22.26*(298-0)+2.9905*10^(-2)*(298^2-0)-1.167*10^(-5)*(298^3-0)+1.9365*10^(-9)*(298^4-0)))*0.01546*x(2)+...
(-241997+(32.24*(x(7)-0)+0.09615*10^(-2)*(x(7)^2-0)+0.3517*10^(-5)*(x(7)^3-0)-0.89875*10^(-9)*(x(7)^4-0))-...
(32.24*(298-0)+0.09615*10^(-2)*(298^2-0)+0.3517*10^(-5)*(298^3-0)-0.89875*10^(-9)*(298^4-0)))*2.2*x(2))-...
((-74922+(19.87*(x(1)-0)+2.512*10^(-2)*(x(1)^2-0)+0.423*10^(-5)*(x(1)^3-0)-2.7525*10^(-9)*(x(1)^4-0))-...
(19.87*(298-0)+2.512*10^(-2)*(298^2-0)+0.423*10^(-5)*(298^3-0)-2.7525*10^(-9)*(298^4-0)))*(x(2)-x(4))+...
(0+(28.90*(x(1)-0)-0.07855*10^(-2)*(x(1)^2-0)+0.2694*10^(-5)*(x(1)^3-0)-0.71825*10^(-9)*(x(1)^4-0))-...
(28.90*(298-0)-0.07855*10^(-2)*(298^2-0)+0.2694*10^(-5)*(298^3-0)-0.71825*10^(-9)*(298^4-0)))*(11.2857*x(2)+0.01546*x(2))+...
(0+(25.48*(x(1)-0)+0.76*10^(-2)*(x(1)^2-0)-0.2385*10^(-5)*(x(1)^3-0)+0.328*10^(-9)*(x(1)^4-0))-...
(25.48*(298-0)+0.76*10^(-2)*(298^2-0)-0.2385*10^(-5)*(298^3-0)+0.328*10^(-9)*(298^4-0)))*(3*x(2)-0.5*x(3))+...
(-393791+(22.26*(x(1)-0)+2.9905*10^(-2)*(x(1)^2-0)-1.167*10^(-5)*(x(1)^3-0)+1.9365*10^(-9)*(x(1)^4-0))-...
(22.26*(298-0)+2.9905*10^(-2)*(298^2-0)-1.167*10^(-5)*(298^3-0)+1.9365*10^(-9)*(298^4-0)))*(0.01546*x(2)+x(5))+...
(-241997+(32.24*(x(1)-0)+0.09615*10^(-2)*(x(1)^2-0)+0.3517*10^(-5)*(x(1)^3-0)-0.89875*10^(-9)*(x(1)^4-0))-...
(32.24*(298-0)+0.09615*10^(-2)*(298^2-0)+0.3517*10^(-5)*(298^3-0)-0.89875*10^(-9)*(298^4-0)))*(2.2*x(2)-x(4)-x(5)+x(3))+...
(-110603+(28.16*(x(1)-0)+0.1675*10^(-2)*(x(1)^2-0)+0.5372*10^(-5)*(x(1)^3-0)-2.222*10^(-9)*(x(1)^4-0))-...
(28.16*(298-0)+0.1675*10^(-2)*(298^2-0)+0.5372*10^(-5)*(298^3-0)-2.222*10^(-9)*(298^4-0)))*(x(4)-x(5))+...
(0+(29.11*(x(1)-0)-0.1967*10^(-2)*(x(1)^2-0)+0.4802*10^(-5)*(x(1)^3-0)-1.966*10^(-9)*(x(1)^4-0))-...
(29.11*(298-0)-0.1967*10^(-2)*(298^2-0)+0.4802*10^(-5)*(298^3-0)-1.966*10^(-9)*(298^4-0)))*(0.17*(3*x(4)+x(5)))+...
(2*96487*x(3)*((1.2723-2.7645*10^(-4)*x(1))+((8.3144*x(1))/(2*96487))*log(((0.17*(3*x(4)+x(5))/(3.23092*x(2)+2*x(4)))*0.1426*10^6*sqrt((3*x(2)-0.5*x(3))/((3*x(2)/0.21)-0.5*x(3))*0.1426*10^6))/(((2.2*x(2)-x(4)-x(5)+x(3))/(3.23092*x(2)+2*x(4)))*0.1426*10^6))-...
((8.3144*x(1)*(x(3)*2*96487)/(50000*0.026))/(2*96487*5.5*10^8*(((0.17*(3*x(4)+x(5)))/(3.23092*x(2)+2*x(4)))*0.1426*10^6/100000)*(((2.2*x(2)-x(4)-x(5)+x(3))/(3.23092*x(2)+2*x(4)))*0.1426*10^6/100000)*exp(-10^5/(8.314*x(1)))))-...
(((8.3144*x(1))/(0.5*2*96487))*(log((x(3)*2*96487)/(50000*0.026))-log(7.0*10^8*(((3*x(2)-0.5*x(3))/((3*x(2)/0.21)-0.5*x(3))*0.1426*10^6/100000)^0.25)*exp((-120*10^3)/(8.314*x(1))))))-...
(((x(3)*2*96487)/(50000*260))*((2.94*10^(-5)*exp(10350/x(1))*100*0.004)+(.02*3.14*(1.256*10^(-4)*exp(4690/x(1)))*100*0.0002/0.0002)+((3.14^2*2.0*0.02/8)*((8.11*10^(-5)*exp(600/x(1))*100/0.2)+(2.98*10^(-5)*(1392/x(1))*100/0.001))))))));
ceq(6)=(((x(4)-x(5))*(0.17*(3*x(4)+x(5)))^3)/((2.2*x(2)-x(4)-x(5)+x(3))*(x(2)-x(4))*(x(2)+0.01546*x(2)+0.01546*x(2)+2.2*x(2)+2*x(4))^2))*(0.1426/0.101)^2-...
exp((-2.63)*10^(-11)*x(1)^4+1.24*10^7*x(1)^3-2.25*10^(-4)*x(1)^2+1.95*10^(-1)*x(1)-6.61*10);
ceq(7)=(((0.01546*x(2)+x(5))*(0.17*(3*x(4)+x(5))))/((x(4)-x(5))*(2.2*x(2)-x(4)-x(5)+x(3))))-...
exp(5.47*10^(-12)*x(1)^4-2.57*10^(-8)*x(1)^3+4.64*10^(-5)*x(1)^2-3.92*10^(-2)*x(1)+1.32*10);
ceq(8)=0.83*(3*x(4)+x(5))-x(3);
ceq(9)=(((-241997)+(29.11*(298-x(1))-0.1967*10^(-2)*(298^2-x(1)^2)+0.4802*10^(-5)*(298^3-x(1)^3)-1.966*10^(-9)*(298^4-x(1)^4))+...
0.5*(25.48*(298-x(1))+0.76*10^(-2)*(298^2-x(1)^2)-0.2385*10^(-5)*(298^3-x(1)^3)+0.328*10^(-9)*(298^4-x(1)^4))+...
(32.24*(x(10)-298)+0.09615*10^(-2)*(x(10)^2-298^2)+0.3517*10^(-5)*(x(10)^3-298^3)-0.89875*10^(-9)*(x(10)^4-298^4)))*(0.17*(3*x(4)+x(5)))+...
((-802842)+(19.87*(298-x(1))+2.512*10^(-2)*(298^2-x(1)^2)+0.423*10^(-5)*(298^3-x(1)^3)-2.7525*10^(-9)*(298^4-x(1)^4))+...
2*(25.48*(298-x(1))+0.76*10^(-2)*(298^2-x(1)^2)-0.2385*10^(-5)*(298^3-x(1)^3)+0.328*10^(-9)*(298^4-x(1)^4))+...
(22.26*(x(10)-298)+2.9905*10^(-2)*(x(10)^2-298^2)-1.167*10^(-5)*(x(10)^3-298^3)+1.9365*10^(-9)*(x(10)^4-298^4))+...
2*(32.24*(x(10)-298)+0.09615*10^(-2)*(x(10)^2-298^2)+0.3517*10^(-5)*(x(10)^3-298^3)-0.89875*10^(-9)*(x(10)^4-298^4)))*(x(2)-x(4))+...
((-283190)+(28.16*(298-x(1))+0.1675*10^(-2)*(298^2-x(1)^2)+0.5372*10^(-5)*(298^3-x(1)^3)-2.222*10^(-9)*(298^4-x(1)^4))+...
0.5*(25.48*(298-x(1))+0.76*10^(-2)*(298^2-x(1)^2)-0.2385*10^(-5)*(298^3-x(1)^3)+0.328*10^(-9)*(298^4-x(1)^4))+...
(22.26*(x(10)-298)+2.9905*10^(-2)*(x(10)^2-298^2)-1.167*10^(-5)*(x(10)^3-298^3)+1.9365*10^(-9)*(x(10)^4-298^4)))*(x(4)-x(5)))-...
((28.90*(x(10)-x(1))-0.07855*10^(-2)*(x(10)^2-x(1)^2)+0.2694*10^(-5)*(x(10)^3-x(1)^3)-0.71825*10^(-9)*(x(10)^4-x(1)^4))*(11.2857*x(2)+0.01546*x(2))+...
(25.48*(x(10)-x(1))+0.76*10^(-2)*(x(10)^2-x(1)^2)-0.2385*10^(-5)*(x(10)^3-x(1)^3)+0.328*10^(-9)*(x(10)^4-x(1)^4))*x(2)+...
(22.26*(x(10)-x(1))+2.9905*10^(-2)*(x(10)^2-x(1)^2)-1.167*10^(-5)*(x(10)^3-x(1)^3)+1.9365*10^(-9)*(x(10)^4-x(1)^4))*(0.01546*x(2)+x(5))+...
(32.24*(x(10)-x(1))+0.09615*10^(-2)*(x(10)^2-x(1)^2)+0.3517*10^(-5)*(x(10)^3-x(1)^3)-0.89875*10^(-9)*(x(10)^4-x(1)^4))*(2.2*x(2)-x(4)-x(5)+x(3)));
c(1)=x(4)-x(2);
c(2)=x(5)-x(4);
c(3)=x(7)-x(6);
c(4)=x(8)-x(7);
c(5)=x(9)-x(10);
c(6)=x(7)-x(10);
c(7)=x(11)-x(10);
c(8)=x(12)-x(11);
c(9)=x(13)-x(12);
命令窗口输入:
A=[-1 0 0 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0 0 0 0 0
0 0 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 0 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 -1];
b=;
x0=;
options=optimset('largescale','off','display','iter','MaxFunEvals',1e3,'maxiter',1e3);
=fmincon(@lym2,x0,A,b,[],[],[],[],@lym1,options)
输出为:
Max Line searchDirectionalFirst-order
Iter F-count f(x) constraint steplength derivative optimality Procedure
0 14 -0.892004 Inf Infeasible start point
Warning: Matrix is singular, close to singular or badly scaled.
Results may be inaccurate. RCOND = NaN. %第一步迭代就出现,导致输出时x的值没变%
> In optim\private\qpsub>eqnsolv at 985
In optim\private\qpsub at 177
In optim\private\nlconst at 711
In fmincon at 560
In lym5 at 17
Warning: Matrix is singular, close to singular or badly scaled.
Results may be inaccurate. RCOND = NaN.
> In compdir at 29
In optim\private\qpsub at 343
In optim\private\nlconst at 711
In fmincon at 560
In lym5 at 17
Warning: Matrix is singular, close to singular or badly scaled.
Results may be inaccurate. RCOND = NaN.
> In compdir at 29
In optim\private\qpsub at 343
In optim\private\nlconst at 711
In fmincon at 560
In lym5 at 17
Warning: Rank deficient, rank = 5,tol = 2.8866e-015.
> In optim\private\qpsub at 581
In optim\private\nlconst at 711
In fmincon at 560
In lym5 at 17
1 27 -0.892004 Inf 2 NaN Inf
Warning: Matrix is singular, close to singular or badly scaled.
Results may be inaccurate. RCOND = NaN.
> In optim\private\qpsub>eqnsolv at 985
In optim\private\qpsub at 177
In optim\private\nlconst at 711
In fmincon at 560
In lym5 at 17
Warning: Matrix is singular, close to singular or badly scaled.
Results may be inaccurate. RCOND = NaN.
> In compdir at 29
In optim\private\qpsub at 343
In optim\private\nlconst at 711
In fmincon at 560
In lym5 at 17
Warning: Matrix is singular, close to singular or badly scaled.
Results may be inaccurate. RCOND = NaN.
> In compdir at 29
In optim\private\qpsub at 343
In optim\private\nlconst at 711
In fmincon at 560
In lym5 at 17
Warning: Rank deficient, rank = 5,tol = 2.8866e-015.
> In optim\private\qpsub at 581
In optim\private\nlconst at 711
In fmincon at 560
In lym5 at 17
2 40 -0.892004 Inf 2 NaN InfHessian not updated
。。。。。。。。。。。。。。。。。。。。。。。。。。。(省略)
75 989 -0.892004 Inf 2 NaN InfHessian not updated
Warning: Matrix is singular, close to singular or badly scaled.
Results may be inaccurate. RCOND = NaN.
> In optim\private\qpsub>eqnsolv at 985
In optim\private\qpsub at 177
In optim\private\nlconst at 711
In fmincon at 560
In lym5 at 17
Warning: Matrix is singular, close to singular or badly scaled.
Results may be inaccurate. RCOND = NaN.
> In compdir at 29
In optim\private\qpsub at 343
In optim\private\nlconst at 711
In fmincon at 560
In lym5 at 17
Warning: Matrix is singular, close to singular or badly scaled.
Results may be inaccurate. RCOND = NaN.
> In compdir at 29
In optim\private\qpsub at 343
In optim\private\nlconst at 711
In fmincon at 560
In lym5 at 17
Warning: Rank deficient, rank = 5,tol = 2.8866e-015.
> In optim\private\qpsub at 581
In optim\private\nlconst at 711
In fmincon at 560
In lym5 at 17
76 1002 -0.892004 Inf 2 NaN InfHessian not updated
Maximum number of function evaluations exceeded;
increase OPTIONS.MaxFunEvals.
x =
1.0e+003 *
1.1030
0.0047
0.0145
0.0042
0.0041
0.8930
0.7430
0.4050
0.8930
1.2030
1.0000
0.9000
0.5080
fval =
-0.8920
exitflag =
0
output =
iterations: 76
funcCount: 1002
lssteplength: 2
stepsize: NaN
algorithm: 'medium-scale: SQP, Quasi-Newton, line-search'
firstorderopt: Inf
message:
lambda =
lower:
upper:
eqlin:
eqnonlin:
ineqlin:
ineqnonlin:
gard =
-0.0018
0.0049
0.0188
-0.0085
-0.0057
0
0
0
0
0
0
0
0
hessian =
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
求求给位大侠帮忙看下,这段程序没得出最后解,应该怎么调试和修改程序,麻烦大家下
毕业设计马上要交了。。
[ 本帖最后由 平凡佃农 于 2009-5-25 22:36 编辑 ]
页:
[1]