|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
我是新手,所以问的地方有很低端的话请见量,诚心求教:
程序如下:
%示例程序
fs=12000;
data=X105_DE_time;%这个是西储大学轴承中心下载的数据,驱动端内圈采集数,数据很大,采样频率是12000;采样点121265个
imf=emd(data); %对输入信号进行EMD分解
[A,f,t]=hhspectrum(imf); %对IMF分量求取瞬时频率与振幅:A:是每个IMF的振幅向量,f:每个IMF对应的瞬时频率,t:时间序列号
[E,t,Cenf]=toimage(A,f); %将每个IMF信号合成求取Hilbert谱,E:对应的振幅值,Cenf:每个网格对应的中心频率 这里横轴为时间,纵轴为频率
%即时频图(用颜色表示第三维值的大小)和三维图(三维坐标系:时间,中心频率,振幅)
cemd_visu(data,1:length(data),imf); %显示每个IMF分量及残余信号--------------------------------------------
disp_hhs(E); %希尔伯特谱----------------------------------------------------------
%画出边际谱
%N=length(Cenf);%设置频率点数 %完全从理论公式出发。网格化后中心频率很重要,大家从连续数据变为离散的角度去思考,相信应该很容易理解
for k=1:size(E,1)
bjp(k)=sum(E(k,:))*1/fs;
end
figure(3);
plot(Cenf(1,:)*fs,bjp); % 作边际谱图 进行求取Hilbert谱时频率已经被抽样成具有一定窗长的离散频率,所以此时的频率轴已经是中心频率
xlabel('频率 / Hz');
ylabel('幅值');
首先我运行的非常慢,大概有十分钟,而且没有得到IMF,图像是密密麻麻的,hilbert谱是很多散点,我这个有什么问题啊 |
|