function y1=OTSU(image,th_set)
%a2=imread('color1.bmp');
gray=rgb2gray(image);%原图像的灰度图
low_high=stretchlim(gray);%增强图像,似乎也不是一定需要
gray=imadjust(gray,low_high,[]);
% subplot(224);imshow(gray);title('after adjust');
count=imhist(gray);
[r,t]=size(gray);
n=r*t;
l=256;
count=count/n;%各级灰度出现的概率
for i=2:l
if count(i)~=0
st=i-1;
break
end
end
%以上循环语句实现寻找出现概率不为0的最小灰度值
for i=l:-1:1
if count(i)~=0;
nd=i-1;
break
end
end
%实现找出出现概率不为0的最大灰度值
f=count(st+1:nd+1);
p=st;q=nd-st;%p和分别是灰度的起始和结束值
u=0;
for i=1:q;
u=u+f(i)*(p+i-1);
ua(i)=u;
end
%计算图像的平均灰度值
for i=1:q;
w(i)=sum(f(1:i));
end
%计算出选择不同k的时候,A区域的概率
d=(u*w-ua).^2./(w.*(1-w));%求出不同k值时类间方差
[y,tp]=max(d);%求出最大方差对应的灰度级
th=tp+p;
if th<th_set
th=tp+p;
else
th=th_set; %根据具体情况适当修正门限
end
y1=zeros(r,t);
for i=1:r
for j=1:t
x1(i,j)=double(gray(i,j));
end
end
for i=1:r
for j=1:t
if (x1(i,j)>th)
y1(i,j)=x1(i,j);
else
y1(i,j)=0;
end
end
end
%上面一段代码实现分割
% figure,imshow(y1);
% title('灰度门限分割的图像'); |