声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 5086|回复: 8

[编程技巧] MATLAB实现倍频程

[复制链接]
发表于 2016-10-8 10:19 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
如何在MATLAB实现倍频程?

本帖被以下淘专辑推荐:

回复
分享到:

使用道具 举报

发表于 2016-10-8 13:34 | 显示全部楼层
倍频程是声学里人的可听频率范围内,将声音的频谱进行一定规则的集中,变成有限的几个频点对应的强度,这样描述比较起来容易,是一种公约的描述形式。
使用1/3倍频程主要是因为人耳对声音的感觉,其频率分辨能力不是单一频率,而是频带,而1/3倍频程曾经被认为是比较符合人耳特性的频带划分方法,不过现在心理声学里提出了Critical Band这么个频带划分方法,听说更符合人耳特性,但1/3倍频程仍在广泛使用。
分析频谱时,对于连续谱而言,分析某频率点上的声功率是没有意义的,因此有必要统计某一频带内的声功率。对于频带划分,倍频程和1/3倍频程是常用的划分方法之一,它们都是相对恒定带宽,例如1/3倍频程的带宽是中心频率的23%
声学及振动测量仪器中的倍频程及1/3倍频程滤波主要是用于对噪声或振动进行频谱分析用的,它们是一种等百分比带宽滤波器,与人耳的频谱分析特性相似。在噪声测量中,使用1/3oct主要是将噪声的频率分布情况更直观的表示出来。便于今后的工作开展。
百分比=(2^(m/2)-2^(-m/2))*100%
其中m就是几倍频程,1/3倍频程m等于1/3
先要知道1/3倍频程的划分方法,相关的书和国标都有公式和现成的数据表格,然后,将时间域的声信号fft变换到频率域,对定义的每个1/3倍频带的声压计算等效连续声压级。这就是1/3倍频程声压级。
  1. function [g,f] = oct3spec(B,A,Fs,Fc,s,n);
  2. % OCT3SPEC Plots a one-third-octave filter characteristics.
  3. %    OCT3SPEC(B,A,Fs,Fc) plots the attenuation of the filter defined by
  4. %    B and A at sampling frequency Fs. Fc is the center frequency of
  5. %    the one-third-octave filter. The plot covers one decade on both sides
  6. %    of Fc.
  7. %
  8. %    OCT3SPEC(B,A,Fs,Fc,'ANSI',N) superposes the ANSI Order-N analog
  9. %    specification for comparison. Default is N = 3.
  10. %
  11. %    OCT3SPEC(B,A,Fs,Fc,'IEC',N) superposes the characteristics of the
  12. %    IEC 61260 class N specification for comparison. Default is N = 1.
  13. %
  14. %    [G,F] = OCT3SPEC(B,A,Fs,Fc) returns two 512-point vectors with
  15. %    the gain (in dB) in G and logarithmically spaced frequencies in F.
  16. %    The plot can then be obtained by SEMILOGX(F,G)
  17. %                              
  18. %    See also OCT3DSGN, OCTSPEC, OCTDSGN.
  19. % Author: Christophe Couvreur, Faculte Polytechnique de Mons ( Belgium)

  20. % Last modification: Sept. 4, 1997, 11:00am.
  21. % References:
  22. %    [1] ANSI S1.1-1986 (ASA 65-1986): Specifications for
  23. %        Octave-Band and Fractional-Octave-Band Analog and
  24. %        Digital Filters, 1993.
  25. %    [2] IEC 61260 (1995-08):  Electroacoustics -- Octave-Band and
  26. %        Fractional-Octave-Band Filters, 1995.   
  27. if (nargin < 4) | (nargin > 6)
  28.   error('Invalide number of input arguments.');
  29. end
  30. ansi = 0;
  31. iec = 0;
  32. if nargin > 4
  33.   if strcmp(lower(s),'ansi')
  34.     ansi = 1;
  35.     if nargin == 5
  36.       n = 3;
  37.     end
  38.   elseif strcmp(lower(s),'cei') | strcmp(lower(s),'iec')
  39.     iec = 1;
  40.      if nargin == 5
  41.       n = 1
  42.     end
  43.     if (n < 0) | (n > 3)
  44.       error('IEC class must be 0, 1, or 2');
  45.     end
  46.   end
  47. end
  48. N = 512;
  49. pi = 3.14159265358979;
  50. F = logspace(log10(Fc/10),log10(min(Fc*10,Fs/2)),N);
  51. H = freqz(B,A,2*pi*F/Fs);
  52. G = 20*log10(abs(H));
  53. % Set output variables
  54. if nargout ~= 0
  55.   g = G; f = F;
  56.   return
  57. end
  58. % Generate the plot
  59. if (ansi)                       % ANSI Order-n specification
  60.   f = logspace(log10(Fc/10),log10(Fc*10),N);
  61.   f1 = Fc/(2^(1/6));
  62.   f2 = Fc*(2^(1/6));
  63.   Qr = Fc/(f2-f1);
  64.   Qd = (pi/2/n)/(sin(pi/2/n))*Qr;
  65.   Af = 10*log10(1+Qd^(2*n)*((f/Fc)-(Fc./f)).^(2*n));
  66.   semilogx(F,G,f,-Af,'--');
  67.   legend('Filter',['ANSI order-' int2str(n)],0);
  68. elseif (iec)                                  % CEI specification
  69.   semilogx(F,G);
  70.   hold on
  71.   if n == 0
  72.     tolup =  [ .15 .15 .15 .15 .15 -2.3 -18.0 -42.5 -62 -75 -75 ];
  73.     tollow = [ -.15 -.2 -.4 -1.1 -4.5 -realmax -inf -inf -inf -inf -inf ];
  74.   elseif n == 1
  75.     tolup =  [ .3 .3 .3 .3 .3 -2 -17.5 -42 -61 -70 -70 ];
  76.     tollow = [ -.3 -.4 -.6 -1.3 -5 -realmax -inf -inf -inf -inf -inf ];
  77.   elseif n == 2
  78.     tolup =  [ .5 .5 .5 .5 .5 -1.6 -16.5 -41 -55 -60 -60  ];
  79.     tollow = [ -.5 -.6 -.8 -1.6 -5.5 -realmax -inf -inf -inf -inf -inf ];
  80.   end
  81.   % Reference frequencies in base 2 system
  82.   f = Fc * [1 1.02676 1.05594 1.08776 1.12246 1.12246 1.29565 1.88695 ...
  83.          3.06955 5.43474 NaN ];  
  84.   f(length(f)) = realmax;
  85.   ff = Fc * [1 0.97394 0.94702 0.91932 0.89090 0.89090 0.77181 0.52996 ...
  86.          0.32578 0.18400 NaN ];  
  87.   ff(length(ff)) = realmin;
  88.   semilogx(F,G,f,tolup,'--');
  89.   semilogx(F,G,f,tollow,'--');
  90.   semilogx(F,G,ff,tolup,'--');
  91.   semilogx(F,G,ff,tollow,'--');
  92.   hold off
  93.   legend('Filter',['IEC class ' int2str(n)],0);
  94. else
  95.   semilogx(F,G);
  96. end
  97. xlabel('Frequency [Hz]'); ylabel('Gain [dB]');
  98. title(['One-third-octave filter: Fc =',int2str(Fc),' Hz, Fs = ',int2str(Fs),' Hz']);
  99. axis([Fc/10 Fc*10 -80 5]);
  100. grid on

  101. function [B,A] = oct3dsgn(Fc,Fs,N);
  102. % OCT3DSGN  Design of a one-third-octave filter.
  103. %    [B,A] = OCT3DSGN(Fc,Fs,N) designs a digital 1/3-octave filter with
  104. %    center frequency Fc for sampling frequency Fs.
  105. %    The filter is designed according to the Order-N specification
  106. %    of the ANSI S1.1-1986 standard. Default value for N is 3.
  107. %    Warning: for meaningful design results, center frequency used
  108. %    should preferably be in range Fs/200 < Fc < Fs/5.
  109. %    Usage of the filter: Y = FILTER(B,A,X).
  110. %
  111. %    Requires the Signal Processing Toolbox.
  112. %
  113. %    See also OCT3SPEC, OCTDSGN, OCTSPEC.
  114. % Author: Christophe Couvreur, Faculte Polytechnique de Mons (Belgium)

  115. % Last modification: Aug. 25, 1997, 2:00pm.
  116. % References:
  117. %    [1] ANSI S1.1-1986 (ASA 65-1986): Specifications for
  118. %        Octave-Band and Fractional-Octave-Band Analog and
  119. %        Digital Filters, 1993.
  120. if (nargin > 3) | (nargin < 2)
  121.   error('Invalide number of arguments.');
  122. end
  123. if (nargin == 2)
  124.   N = 3;
  125. end
  126. if (Fc > 0.88*(Fs/2))
  127.   error('Design not possible. Check frequencies.');
  128. end
  129. % Design Butterworth 2Nth-order one-third-octave filter
  130. % Note: BUTTER is based on a bilinear transformation, as suggested in [1].
  131. pi = 3.14159265358979;
  132. f1 = Fc/(2^(1/6));
  133. f2 = Fc*(2^(1/6));
  134. Qr = Fc/(f2-f1);
  135. Qd = (pi/2/N)/(sin(pi/2/N))*Qr;
  136. alpha = (1 + sqrt(1+4*Qd^2))/2/Qd;
  137. W1 = Fc/(Fs/2)/alpha;
  138. W2 = Fc/(Fs/2)*alpha;
  139. [B,A] = butter(N,[W1,W2]);

  140. function [p,f] = oct3bank(x);
  141. % OCT3BANK Simple one-third-octave filter bank.
  142. %    OCT3BANK(X) plots one-third-octave power spectra of signal vector X.
  143. %    Implementation based on ANSI S1.11-1986 Order-3 filters.
  144. %    Sampling frequency Fs = 44100 Hz. Restricted one-third-octave-band
  145. %    range (from 100 Hz to 5000 Hz). RMS power is computed in each band
  146. %    and expressed in dB with 1 as reference level.
  147. %
  148. %    [P,F] = OCT3BANK(X) returns two length-18 row-vectors with
  149. %    the RMS power (in dB) in P and the corresponding preferred labeling
  150. %    frequencies (ANSI S1.6-1984) in F.
  151. %                              
  152. %    See also OCT3DSGN, OCT3SPEC, OCTDSGN, OCTSPEC.
  153. % Author: Christophe Couvreur, Faculte Polytechnique

复制代码

点评

赞成: 5.0
试试看看好使不 感谢分享  详情 回复 发表于 2016-12-6 08:38
赞成: 5
  发表于 2016-12-2 14:59
回复 支持 1 反对 0

使用道具 举报

发表于 2016-10-10 09:06 | 显示全部楼层
matlab进行内插----就是在一组数种插入0
比如以前数组为A=[1 2 3 4 5]
现在可以内插后就编程A=[1 0 0 2 0 0 3 0 0 4 0 0 5 0 0],如果这个是时域的变化,时域扩大3倍,根据傅里叶变换性质就知道,频域缩小成原来的1/3,幅度也是原来的1/3,内插补零以后,经过fft,就可以达到1/3倍频,只需要再乘以系数3,就可以了
抽取---就是隔几个抽取一次
在频域中进行抽取也可以。
比如A=[1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 9
只需要编写n=1:(size(1)/3) B(n)=A(3*n),直接在频域进行抽取可以满足LZ的要求,B=[1 4 2 5 3 9]

点评

这就是传说中的补零吗  详情 回复 发表于 2016-11-28 08:39
发表于 2016-11-26 16:09 | 显示全部楼层
好东西啊,谢谢各位大神~~~~
发表于 2016-11-28 08:39 | 显示全部楼层
怪咖先生 发表于 2016-10-10 09:06
matlab进行内插----就是在一组数种插入0
比如以前数组为A=[1 2 3 4 5]
现在可以内插后就编程A=[1 0 0 2 0 ...

这就是传说中的补零吗
 楼主| 发表于 2016-12-2 14:59 | 显示全部楼层
Eminem 发表于 2016-10-8 13:34
倍频程是声学里人的可听频率范围内,将声音的频谱进行一定规则的集中,变成有限的几个频点对应的强度,这样 ...

谢谢
发表于 2016-12-6 08:38 | 显示全部楼层
Eminem 发表于 2016-10-8 13:34
倍频程是声学里人的可听频率范围内,将声音的频谱进行一定规则的集中,变成有限的几个频点对应的强度,这样 ...

试试看看好使不  感谢分享
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-15 10:22 , Processed in 0.069181 second(s), 20 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表