① 啮合转子振动噪声
阴、阳转子是螺杆压缩机的核心部件,在工作过程中既受到径向和轴向的气体作用力,又受到传动机构的作用力以及轴承的支撑力。这些力在螺杆压缩机工作过程中周期性的变化,是压缩机机械性振动噪声的激励源。在螺杆压缩机中,阳转子通过齿面接触直接驱动阴转子同步旋转,啮合过程中不可避免的产生机械振动,辐射机械噪声,是主要的机械性振动噪声激励源。在实际运行过程中,由于转子是金属部件,本身存在挠性,由于加工或者装配误差导致的不对中、不平衡,往往会引起转动过程中的径向振动,产生异响,也都可能成为阴阳转子运动过程中振动噪声的激励源。
② 支撑轴承振动噪声
螺杆压缩机所用的轴承主要分为滑动轴承和滚动轴承。滑动轴承的振动主要是由于润滑不充分或出现异常的摩擦使得油膜破裂而引起金属间“粘滑”激振导致的;滚动轴承的振动主要是因为离散的滚动体对滚道的周期性冲击导致[4]。相比而言,滚动轴承的振动噪声大于滑动轴承,但滚动轴承能够提供精确的运转精度和承受较高的转速,因此在螺杆压缩机中主要采用滚动轴承来承受轴向和径向力,而滑动轴承一般只应用于一些大型的螺杆压缩机中。
① 齿间容积噪声
当螺杆压缩机处于吸气结束后、排气开始前的状态时,齿间容积并未与吸、排气孔口连通,在此过程内齿间容积与外界的连通通道仅有泄漏三角形、齿顶间隙、啮合间隙和端面间隙。齿间容积内的气体介质随着齿间容积的减小而不断被压缩,同时少部分介质会通过上述泄漏通道进入到相邻齿间容积或吸气侧齿间容积,在此过程内不仅会产生流体流动噪声,而且在压差作用下气体介质通过各间隙内的流动也会产生一定的噪声。当齿间容积与喷油、喷液或补气孔口连通时,额外的气液流动甚至会导致更为剧烈的流动噪声。泄漏三角形的面积较其他泄漏通道的面积而言相对较大,同时泄漏三角形前后连接着两个压力不等的齿间容积,这两个相对独立的声学元件还会受到外界的激励而产生共鸣,导致更大的流体动力性噪声。
② 排气噪声
在转子啮合腔与排气孔口连通的初期,在压差的作用下排气腔中的高压气体会很快地倒流入啮合腔导致腔内压力快速升高。在惯性力的作用下会形成过冲,使得啮合腔中的压力要大于排气压力,而排气腔中的压力则处于低谷。随着排气孔口的开度迅速增加和排气容积的减小,气体开始向排气腔流动。此时,流入排气腔中的气体速度和排气腔中气体压力的变化较平稳,主要受排气容积变化率和孔口流通面积的影响。
① 提高加工精度,减小装配误差
提高转子加工精度降低转子表面粗糙度和改善装配工艺减小轴系装配误差等措施减小转子啮合过程中产生的机械振动,从源头上控制压缩机的振动激励源,可以有效降低压缩机运行过程中产生的机械振动。靳春梅等通过实验研究指出,提高转子的加工精度,由铣削改为磨削,降低了表面粗糙度,使压缩机运行过程中振动得到有效控制,中、高频噪声也得到一定程度的降低。
② 减小支撑轴承游隙
减小支撑轴承游隙,可以提高转子旋转精度,缩小转子啮合过程中偏心量,降低高速运转过程中转子不平衡质量诱发的振动噪声。殷玉枫等[7]通过理论与实验研究得出滚动轴承的径向游隙对轴承振动噪声的影响最为显著。随着径向游隙的加大,振动噪声随之增强,并呈现很好的线性关系。
3.2 振动传递路径隔振
① 提高结构件刚度
提高机壳刚度,降低机壳振动响应。螺杆压缩机机壳径向和圆周方向上增加加强筋,可以提高机壳的刚度,降低机壳振动响应,阻碍压缩机转子和轴承的振动激励传递到机壳上。
② 设计安装减振垫
设计安装减振垫,隔离螺杆压缩机的振动传递。根据螺杆压缩机的转子型线、电机运行转速、自身重量和实际减振需求,设计减振器,安装到螺杆压缩机机脚上,可以阻碍机脚振动传递到安装基础面上,有效降低压缩机安装基础上的振动。
① 机壳双层壁设计
螺杆压缩机机壳采用双层壁结构,可以阻碍振动噪声的传递,降低压缩机的整体噪声。格力,大冷等企业将机体外壳采用双层壁结构,减弱噪声向外辐射的能力,起到隔离噪声的作用。此外,压缩机采用液体冷却方式(如油冷、水冷等),不仅可阻碍噪声的传递,而且采用液冷方式后可取消风冷方式的风扇,也有助于降低螺杆压缩机的整体噪声。
② 隔声罩设计
根据螺杆压缩机的噪声频谱特性,设计隔声罩结构,优化隔声罩的吸声材料,可以有效降低压缩机的远场噪声。程双灵等[16]通过对隔声罩结构和吸声材料的优化,螺杆压缩机噪声下降了近10dBA。
① 转子材质替换。随着非金属材料性能的改善和加工精度的提高,其良好的减振降噪性能逐渐显现出来。在满足使用要求的情况下,螺杆压缩机的阳转子可采用金属钢芯上注塑非金属材料的结构,阴转子采用金属材料,降低阴阳转子啮合过程中产生的机械性振动噪声。
② 转子表面处理。在转子表面喷涂自润滑封严涂层,一方面涂层的封严特性可减小转子间的啮合间隙,降低齿间容积的泄露通道内流体流动诱发的流体动力性噪声;另一方面涂层的自润滑特性可降低转子啮合的摩擦系数,降低转子啮合过程中产生的机械振动噪声。
5.2 转子型线
① 增加转子齿数。螺杆压缩机随着转子齿数的增加,增加了转子啮合过程中的重合系数,使啮合载荷平均分配在较多的齿面上,减小单位齿面压力,降低转子啮合过程中产生的机械振动噪声。此外,转子齿数较少时,转子啮合频率低,低频噪声波长较长,其衍射能力强,传播距离更远,低频噪声控制较难;而转子齿数增多,转子啮合频率向高频偏移,在传播过程中容易被吸收衰减,高频噪声容易控制,使压缩机远场噪声值更低。
② 优化齿型设计。在理论研究和实验研究的基础上优化转子的齿型设计,如增大扭转角增加重合系数,增加啮合线长度减小单位啮合线上的载荷等措施减小转子转动过程中的齿面接触力,降低转子啮合过程中产生的机械振动噪声,使运行过程中转子的振动平稳,噪声稳定。