声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2211|回复: 1

[其他相关] 一堂课讲清非线性动力学、混沌、分型、网络科学、复杂系统的...

[复制链接]
发表于 2019-12-3 10:44 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
如果你和我一样,对非线性动力学(Nonlinear Dynamics)、混沌(Chaos)、分形(Fractals)、网络科学(Network Science)、复杂系统(Complex Systems)感兴趣,但是有时候却觉得他们都差不多是一回事,搞不清之间的区别,那么这堂Strogatz教授的课不仅可以告诉我们这些概念是什么意思,还可以从历史角度介绍他们的发展,以及数学上他们之间的明确联系。

那么谁是Strogatz教授呢?某卖书的网站上对Strogatz教授的介绍是这样的:

Steven H. Strogatz,美国艺术与科学院院士,康奈尔大学应用数学系 Schurman 教授,国际非线性动力学专家,主要研究领域是非线性动力学与复杂系统,目前已发表论文200多篇,其著作被引用次数达到16300多次。

Strogatz教授曾获得麻省理工学院高教学奖以及数学普及终身成就奖等荣誉,他的关于多种非线性系统的研究已被 Scientific American,Nature, Discover, Business Week 以及 The New York Times 等作为特辑报导。

是不是觉得很牛逼但然并卵,那我只能讲大家熟悉的一件事了:

当Watts提出著名的“六度理论”引爆社交网络的时候,他是基于自己在1998年发表的一篇Nature论文《Collective dynamics of 'small-world' networks》。那时Strogatz是Watts的导师,这篇论文的第二作者。这篇论文的引用量是37257,物理学领域所有论文按引用量排名第六。
这门课是康奈尔大学的MAE 5790,看编号可以知道,这是机械与航空航天工程学院(MAE)的一门研究生一年级级别的课程(5XXX)。课程名称:Nonlinear dynamics and chaos。

课程视频地址:
https://www.youtube.com/watch?v=ycJEoqmQvwg&feature=youtu.be

如果你现在能挤出一个半小时,我建议直接点开这门课的第一堂概述课,听Strogatz教授本人跟你娓娓道来。

如果暂时没空,那么请让微臣帮忙总结一下。后面的内容约10分钟读完。

为了配合这门课,Strogatz教授写了一本同名教材,现在是第二版。(有中文版,但据说翻译不地道,有基础的同学建议直接读原版)
1.png
Nonlinear dynamics and chaos

本书的第一章,Overview,对应的就是这堂课的内容。大师的Overview课是非常有价值的,比起具体技巧,大师比我们凡人强得多的更是眼界。那就让Strogatz教授带我们开开眼界吧。

动力学发展的历史
十七世纪中期(mid-1600s),牛顿到达他的学术巅峰——发明微积分、发现牛顿三定律和万有引力、解释行星围绕太阳运动,也就是二体运动(2-Body Motion),行星和太阳二体。之后牛顿仰慕者们希望将二体运动扩展到三体运动时,但是由于三体运动太难计算,他们一直卡住没有什么进展。

一卡卡到了十九世纪晚期(late-1800s),因为定量研究走不通,Poincaré提出从定性角度去研究三体运动,使他成为了窥见混沌(Chaos)的第一人。他从确定的公式出发,发现了能够产生不循环的、对初始条件敏感的行为,从而认为无法通过计算长期的精确预测三体运动的结果。

但是他的研究成果当时并没有引起大家的注意,直到二十世纪中期(mid-1900s)之前,动力学还是基本围绕非线性振子(Nonlinear Oscillator)以及它在物理和工程领域的应用发展的,主要应用在无线电、雷达等方面。

到了1950s,计算机开始出现,人们可以用计算机来模拟动力学系统进行实验。

1963年,Lorenz在使用计算机来模拟大气系统,研究天气预测的时候,发现简单的几个因素复合就产生了一种神奇的现象,这个动力系统不会稳定下来变成周期性或者静止的点,而是一直以一种非周期性的不规则的方式震荡,蝴蝶形状的Chaos图形就是在他的实验中得到的。
2.png
混沌和非线性

1970年后,混沌理论有了长足的发展,Ruelle和Takens研究了扰流(Turbulence)的触发;May则在生物学领域提出用混沌来解释人口增长模型,让大家理解到了非线性的重要性和用线性来简化产生的问题;物理学家Feigenbaum则发现了在不同领域、不同特征的系统,往往发展出相似的混沌系统,提出这是一个普适的定律(Universal Law)。

同样在1970s,Mandelbrot发现了分形(Fractal),直到现在爱好者们还在用计算机画出漂亮的无限Zoom in的Mandelbrot分形。

1980年后,混沌理论开始成为热门研究。

书中给出表格:
3.png
A Capsule History of Dynamics

动力学的数学逻辑结构
小心,这里要出现数学公式了。

为了把现实世界的运动归类,Strogatz教授提出可以根据两个指标:一个是动力学系统维数,也可以称为阶数,就是系统涉及变量个数,另一个是这个运动是线性的还是非线性的。

那我们先来看看他是怎么用数学来描述系统。

例1:牛顿物理中的一个匀速运动的物体。

根据初中学过的知识,我们知道这个物体的速度v是恒定的,不管物体运动到哪里。我们可以画图,纵坐标是速度v,横坐标是物体的位置。
4.png
例1

这里的速度v,实际就是dx/dt,就是这个物体的位置的变化率,按照牛顿对导数的记号方法,用x上面加一点表示。

这样这个系统的数学公式就是: 5.png ,其中a是一个常数。


这个公式里,有一个变量 6.png ,Strogatz教授称这是一维的;然后等式右边不包含任何平方、变量相乘、或者以变量为输入的函数,他称这是线性的。也就是这是一个一维线性系统。


例2:牛顿物理中的一个受作用力加速运动的物体。

纵坐标是物体的速度v,横坐标是物体的位置x,我们可以画图:
7.png
例2

按照上面的约定,我们可以写出这个系统的数学公式: 8.png ,其中a、b是常数。所以这个系统也是一维线性系统。

例3:Damped oscillator。一个物体以一定的初速度,在有阻力的情况下随弹簧振动慢慢停滞的运动。

纵坐标是物体的速度v,横坐标是时间t,我们可以画图:
9.png
例3-1

Damped oscillator的运动公式:
10.png
例3-2

假设 11.png
那么 12.png
13.png
上面两条 14.png 的公式,就是描述这个系统的数学公式。通过这组公式可以看出,这个系统是二维的线性的系统。

例4:Pendulum。一个物体在摆动。
15.png 也可以写成 16.png
假设 17.png ,那么
18.png
通过这组公式可以看出,这个系统是二维的,同时因为右侧有变量x1输入sin函数,所以这个系统是非线性的。这是一个二维非线性系统。

用动力学的视角看世界
给出了系统的维度(或者说阶数)的定义,再给出了线性非线性的定义之后,我们就可以把这个世界的运动进行分类了。Strogatz教授给出了一张大图:
19.png
A Dynamical View of the World

这图在上课时候写在黑板上是这样的:
20.png
黑板上的A Dynamical View of the World

这就是Strogatz教授对世界上的运动的归类的理解。


第一行是线性系统,我们就先不关心了,第二行是非线性系统,从一维(n=1)到二维到三维,这三部分就是这本书主要教授的内容。

而这张图的右下角,当n很大(n>>1)的时候,就是Network Science研究的领域,如果n是连续的话,这时就是广义相对论、扰流等研究的领域,整个右下角,统称为Complex Systems。也就是说,在理解了Chaos的数学表达之后,再将变量从3扩展到几万几亿个,就可以称之为Network Science了。


回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-12 17:58 , Processed in 0.071369 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表