马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
本帖最后由 wdhd 于 2016-4-21 10:42 编辑
中国• 海南 中国科协 2004 年学术年会电力分会场暨中国电机工程学会 2004 年学术年会论文集 5
国内600MW机组升级为超超临界参数
若干技术问题探讨
摘要:本文对国内600MW机组升级为超超临界参数的必要性进行了较充分的说明;对600MW超超临界机组的主要设计原则及参数选择进行了论证,并提出了推荐意见;对600MW超超临界机组的主辅机选择原则及国产化程度等进行了较全面的分析。
关键词:火电;600MW超超临界机组;技术问题;探讨
1 国内600MW机组升级为超超临界参数的必要性
自80年代初我国引进300MW和 600MW亚临界机组技术以来,目前300~600MW亚临界机组已成为我国火力发电的主力机组。在我国一次能源构成中煤炭是主要能源,在相当长的时间内燃煤火力发电仍将在我国发电领域占主导地位。提高发电效率、降低污染、节约资源是今后火电机组的发展方向。
提高蒸汽参数、发展大容量机组是提高机组热效率的主要手段。目前世界各国火力发电机组参数已由亚临界参数(18.0MPa、540℃)发展到超临界参数(25.0MPa、540℃~566℃)和超超临界参数(24~30.0MPa、580℃~610℃及以上。目前国际上超超临界机组的发电效率可达45%~47%, 比亚临界机组提高6%~7%,比超临界机组高3%~4%,其可靠性与超临界和亚临界机组基本相当,技术成熟。因此,从我国国情出发,发展超超临界燃煤机组有利于提高机组热效率,降低发电煤耗,同时可减少二氧化碳和其他大气污染物的排放,是提高我国火电机组技术水平、实现火电机组技术优化升级最有效又现实的措施,也是我国火力发电机组发展的必然趋势。
根据中国电力工业的现状和发展规划,从电网容量上看,需要装设1000MW等级的大机组。但是今后在电网中不可能全部建设1000MW机组。其原因:一是,一些地区的厂址受到建厂条件和运输条件的限制;二是,机组容量越大,电网对它的可靠性要求越高,国产1000MW机组的可靠性在达到一定水平之前不可能在电网中成为主力机组;三是,1000MW机组国产化需要一定的时间,国产化进程将直接关系到工程造价,而工程造价直接影响机组的上网竞争能力。以300MW和600MW亚临界机组为例,它们是80年代初期一同引进的技术,具有同等的技术条件和应用条件, 但是300MW机组却首先成为电网的主力机组,截止到2001年已有186台机组投入运行,而600MW机组却只有22台投入运行,且大部分机组是在90年代后期投入运行的。究其原因主要是由于主机和辅机的国产化进程和可靠性问题导致的结果。600MW机组的主机和辅机在中国开始制造和运行已经近二十年的时间,国产化和可靠性问题已经得到解决,现在开始建设的工程绝大部分已采用600MW机组。将600MW机组参数升级为超超临界,虽然会引起一
6 中国科协 2004 年学术年会电力分会场暨中国电机工程学会 2004 年学术年会论文集 中国• 海南
些变化,但主要是集中在主机的部件要采用更好的材料上,对于辅机基本上没有影响,与将容量上放大到1000MW机组相比在技术上成熟得多。 因此,可以预测我国600MW超超临界机组在国产化进程和可靠性上将比1000MW超超临界机组更快地达到较高的水平。
在今后相当长的时间内600 MW机组将成为火电建设和电网运行的主力机组。只有主力机组的效率得到提高,才能使全国的发电煤耗大幅度的降低,并获得明显的环保效益。因此,研究在我国600MW机组上采用超超临界参数有着非常重要的意义。
2 再热方式选择
超超临界机组在提高进汽压力的同时,为避免汽轮机末级蒸汽湿度过高,国外一些超超临界机组采用二次再热。与传统的一次再热循环比较,二次再热有如下主要三个优点:
(1) 降低低压缸的排汽湿度,减少末级叶片的磨蚀。
(2) 降低再热器的温升。一次再热循环系统中再热器的温升为280℃左右,采用二次再热系统每个再热器中的温升在200℃左右,这使得锅炉出口蒸汽温度更加均匀。
(3) 提高机组效率。二次再热与一次再热比较,其热效率一般高出1.3%~1.5%。
低压缸的排汽湿度与机组的初参数、再热蒸汽参数的选择以及汽机背压都存在一定的关系。根据工程经验,排汽湿度一般控制在10%左右,且最大不应超过12%,否则将造成末级叶片严重的腐蚀。根据哈尔滨汽轮机厂提供的资料,若蒸汽参数选择28.0MPa、580/600℃,汽机背压4.9kPa时,排汽湿度就将达到10.7%,已经达到了较大的排汽湿度。若汽机背压继续降低,则汽机排汽湿度还将增大。日本在川越电厂的两台机组由于主蒸汽压力高(31MPa),采用了二次再热。丹麦两台机组主汽压力为29 MPa,但由于汽机背压低,也采用了二次再热。
虽然采用二次再热循环有上述优点,但根据相关资料介绍,二次再热要求汽轮机增加一个超超高压缸,低压缸进口温度将大于400℃,使低压缸转子进入高温回火脆性区,必须对低压转子材料进行特殊处理,将使汽轮机设备成本增加30%;锅炉增加比例会更多;机组的造价也要高10%~15%。而机组的投资一般约占电厂总投资的45%~48%左右,经折算约要提高电厂投资4.5%~7.2%。由此可见,二次再热所带来的总体经济性并不十分明显。另一方面,二次再热循环系统复杂,运行操作也带来不便,使得二次再热机组的可靠性降低、运行成本增加。
我国近期开始建设的华能玉环电厂2×1000MW级超超临界机组和邹县四期2×1000MW超超临界机组均采用一次再热。
综合考虑各方面的因素,我国目前阶段超超临界机组采用一次再热比较合适。
3 蒸气参数选择
3.1 参数与经济性的关系
根据1977年在丹麦哥本哈根召开的VGB年会上,提出了超临界参数的具体效益,这些数据得到国际的公认和引用。其中认为将主汽压力由18.5提高到25.0MPa,可降低净热耗2%;若进一步提高到30.0MPa,尚可再降低0.75%。而蒸汽温度每提高10 ℃机组效率的提高见表1:
表1 蒸汽温度每提高10 ℃对机组效率的提高汇总表
主汽温度 +10oC
一次再热汽温度 +10oC
二次再热汽温度 +10oC
一次再热机组效率变化
+0.30%
+0.25%
--
二次再热机组效率变化
+0.25%
+0.15%
0.15%
根据国外某公司分析,机组效率变化与参数的关系见图1和图2。
从图1中可以看出:机组参数从亚临界参数169kg/cm2、538/538℃提高到超临界参数246 kg/cm2、538/566℃后,机组效率可提高2.5%,其中由于压力的提高,使效率提高1.7%;温度的提高,使效率提高0.8%。
从图2中可以看出:机组参数从超临界参数246kg/cm2、538/566℃提高到超超临界参数250 kg/cm2、600/600℃后,机组效率提高约3.2%。
从这两个图还可以看出:亚临界参数到超临界参数转变中,对机组效率的影响主要来自于压力的
提高;而从超临界参数到超超临界参数的转变中,温度的提高对于机组效率的影响要比压力提高的
中国• 海南 中国科协 2004 年学术年会电力分会场暨中国电机工程学会 2004 年学术年会论文集 7
影响大得多。
3.2 主汽温度选择
由于更高温度参数(如温度650℃、700℃、760℃)的实施尚需进行大量的研究及中间实验工作,根据目前超超临界机组已有的运行业绩,近十年火电机组发展可行的主蒸汽及再热蒸汽温度在下列范围内:566℃ /566℃,566℃ /580℃,580℃ /580℃,580℃ /600℃,600℃ /600℃,600℃ /610℃。
图1机组效率变化与参数关系曲线
图2 机组效率变化与参数关系曲线
如前所述,从超临界参数至超超临界参数的转变中,主汽温度的提高对机组经济性效益提高明显。目前国际上主汽温度/再热汽温600℃ /600 ℃运行业绩较多,与之对应的高温材料也已经很成熟。下面将超超临界机组主汽温度分别为580℃C和600℃进行对比分析。
从经济性的角度看,主蒸汽进汽温度从580℃提高到600℃,机组热效率提高约0.5 %~0.6%。
对锅炉而言,过热蒸气从585℃提高到605℃,锅炉型式基本一样,仅后屏过热器和末级过热器的工质温度提高,使得后屏过热器部分受热面管子、集箱、管道的材料档次提高。后屏过热器的管子材料还是可以使用T91、TP347H,但管子壁厚将增加约0.5~1mm;而末级过热器管系材料使用TP347HFG的部分要增加,相应使用材料档次提高一挡;集箱和管道的材料由P91改用P92,因此,过热蒸气温度从585℃提高到605℃约增加锅炉总价的1%。
[此贴子已经被作者于2005-8-6 16:14:56编辑过]
|