声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 11984|回复: 30

[非线性振动] 【原创】球轴承的变刚度振动

[复制链接]
发表于 2006-9-3 18:00 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
球轴承的变刚度(或变柔度)振动(varying compliance vibration)在90年代曾经是一个热点,2000年后也有人继续研究。
因为前一阵正在做非线性方面的东西,所以以别人的论文为基础,将求解球轴承的变刚度振动问题作为训练手段,最后与他人的结果做了简单对比,这样可以验证相关程序并熟悉求解过程。
这几天闲来无事,^_^,将理论部分、计算程序、简单结果逐步上传,希望大家参与讨论给予意见!

一。理论基础

更正:附件图01.jpg中第一句 “如图1.2所示” 应为 “如图1.1所示”。

01

01

02-1

02-1

03

03

04

04


(其它部分将以回帖的形式陆续更新,待续)

[ 本帖最后由 yejet 于 2006-10-3 17:01 编辑 ]

评分

2

查看全部评分

回复
分享到:

使用道具 举报

 楼主| 发表于 2006-9-5 13:25 | 显示全部楼层
二。程序实现
(本来与第一部分写在一起,后来发现太长了,可能很少有人耐心看完,所以将这一部分分开发布。)

理论基础部分只是阐述了非线性轴承力的产生和推导,实际计算的时候是考虑了一个转子-轴承系统中轴承非线性力对整个系统的影响。
假设转子为刚性,两端由球轴承支撑,盘在轴段的中间。转子轴承系统的动力学方程如下:

05-2

05-2

下面以西北工业大学赵凌燕论文《滚动轴承-转子系统的非线性动力学研究》上的一组数据为例编写Matlab程序,其具体数据见程序,不再一一列出。
程序主要是求解一个2元2阶的常微分方程组,数值积分得到系统的响应。其中,为了绘制分岔图,选择响应取点的周期为激励力的周期(这里即变刚度激励力的周期1/fvc)。

主程序


  1. function BallBrg_NonL_Forum
  2. % 求解外圈固定球轴承的变柔度(VC-Varying Compliance)振动(基于赵凌燕的论文)
  3. % 程序有一些不合理、甚至错误的地方,可以用更好的代码代替,由于时间关系没有修改,
  4. % 如有人感兴趣可以把修改的程序发布出来。
  5. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  6. % 作者:toes
  7. % 版本:论坛发布版
  8. % 相关程序:BallBrg_NonL_Sub_Forum
  9. % 调试环境:Matlab7.0   WinXP SP2
  10. % 参考文献:
  11. % 1.赵凌燕.滚动轴承-转子系统的非线性动力学研究.西北工业大学硕士论文.2003.3.
  12. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13. clear
  14. clc

  15. %% 参数设置
  16. % 用了全局变量来传递一些变量,不推荐,但是懒得改了,好心人优化一下。
  17. global w d D Nb gama kn M C F

  18. % 为了方便绘制分岔图而设置的参数
  19. n_One_T = 100;% 每个周期的采样点数
  20. n_T = 100;% 采样时间占几个周期

  21. % 61903/P5(17*30*7) 球轴承参数
  22. d=0.0173;% 内滚道直径
  23. D=0.0265;% 外滚道直径
  24. Nb=9;     % 滚子数

  25. n_n = 0;
  26. w_limit1=100;% 最低转速(rpm)
  27. w_limit2=20000;% 最高转速(rpm)
  28. w_step = 100;% 转速变化步长(rpm)

  29. q_initial(1:4,1) = 1e-11;% 初始值
  30. gama = 0.00002;% 间隙(m)
  31. F = 6;% 径向力(N)
  32. kn = 7.055e9*0.001^1.5;
  33. % 滚子与滚道之间接触力与变形量的关系(N/mm^1.5)。赵的论文给出。
  34. M=0.6*[1 0;0 1];% 质量矩阵
  35. C=200*[1 0; 0 1];% 阻尼矩阵

  36. %% 响应计算循环
  37. for w_rpm=w_limit1:w_step:w_limit2

  38.     n_n = n_n+1 % 计数变量
  39.     disp(w_rpm)
  40.     w = w_rpm*pi/30;% 转化为rad/s单位
  41.    
  42.     wi = w;% 内圈角速度
  43.     wo = 0;% 外圈角速度
  44.    
  45.     w_cage = ( wi*d/2+wo*D/2 )/2/((D+d)/4);% 保持架
  46.     w_vc = w_cage*Nb/2/pi; % 变刚度频率(vc频率)。单位Hz
  47.     T_vc = 1/w_vc;% vc周期

  48.     dt=T_vc/n_One_T;% 取点时间步长,dt随转速变化。
  49.     time=n_T*T_vc;% 总的时间
  50.    
  51.     n = round(time/dt);% 离散点数
  52.     t_span(1:n) = linspace(0,time,n);% 时间数组
  53.    
  54.     [t,q]= ode23tb('BallBrg_NonL_Sub_Forum', t_span, q_initial);
  55.     % 至于用什么ode函数求解合适需要比较验证

  56.     Q{n_n}=q;
  57.     save Q.mat Q; % 存储数据
  58. end
  59. disp('Calculation is done!')
复制代码


子程序


  1. function dq = BallBrg_NonL_Sub_Forum(t,q)
  2. % BallBrg_NonL调用的微分方程子程序
  3. % 求解外圈固定球轴承的变柔度(VC)振动
  4. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  5. % 作者:toes
  6. % 版本:论坛发布版
  7. % 相关程序:BallBrg_NonL_Forum
  8. % 参考文献:
  9. % 1.赵凌燕.滚动轴承-转子系统的非线性动力学研究.西北工业大学硕士论文.2003.3.
  10. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11. global w d D Nb gama kn M C F

  12. wi = w;
  13. wo = 0;
  14. w_cage=( wi*d+wo*D )/4/((D+d)/4);% 保持架转速(rad/s)

  15. fq=zeros(2,1);% 轴承力初值

  16. diff_1_3 = q(1,1);% 水平方向位移
  17. diff_2_4 = q(2,1);% 垂直方向位移

  18. % 求轴承的非线性反力
  19. for No_ball=1:Nb
  20.     sita(No_ball) = 2*pi/Nb*(No_ball-1) + w_cage*t;% 第No_ball个滚珠的位置角
  21.     Clearance(No_ball,1) = diff_1_3*sin( sita(No_ball) ) ...
  22.         + diff_2_4*cos( sita(No_ball) ) - gama;% 滚珠与内滚道的间隙变化。
  23.     % 判断哪几个滚动体受到接触力
  24.     if Clearance(No_ball)<=0;
  25.        Clearance(No_ball) = 0;
  26.     end
  27.     fs = abs( (1000*Clearance(No_ball))^1.5 );

  28.     fq(1,1) = fq(1,1)+kn*fs*sin(sita(No_ball));
  29.     fq(2,1) = fq(2,1)+kn*fs*cos(sita(No_ball));
  30. end

  31. F_m1d1_cos = 0;% 不平衡力在水平方向的投影。本例不考虑。
  32. F_m1d1_sin = 0;% 不平衡力在垂直方向的投影。本例不考虑。

  33. Fq(1,1)= - fq(1,1) + F_m1d1_cos;% 水平方向外力
  34. Fq(2,1)= - fq(2,1) + F_m1d1_sin - F;% 垂直方向外力

  35. K = [0 0; 0 0];% 刚性转子,轴段为刚性。

  36. % 动力学微分方程
  37. dq(3:4,1)=inv(M)*(Fq-K*q(1:2,1)-C*q(3:4,1));% x和y方向加速度
  38. dq(1:2,1)=q(3:4,1);
复制代码

(其余部分整理中,待续。)

[ 本帖最后由 toes 于 2006-9-5 13:32 编辑 ]
 楼主| 发表于 2006-9-6 18:54 | 显示全部楼层
三。结果分析

应用第二部分的MATLAB代码求解,可以得到转子-轴承系统的非线性响应。
我们可以对非线性响应进行分析,来研究响应的特点,也能由此判断系统的运行状况。一般,分析会从时域波形、频谱图、庞加莱图或分岔图等方法开始着手。这里,就频谱图和分岔图各举一例。

1。下图为转子-轴承系统10000rpm时的频谱图:

FFT01

FFT01

可以看到,图中主要以变刚度频率fvc和它的次谐波频率为主,包括fvc、1/5fvc等等;而且图中杂乱的频率很多,幅值也较大,就像有“噪声”干扰一样,这说明系统已不是在做周期运动了,而是一种非周期的状态。

2。再从分岔图来分析。下图为系统100~20000rpm的分岔图:

bifurcation02

bifurcation02

分岔图并不是很清楚,很多转速段可以细致再做(主要是我懒,呵呵),但从图中可以看到几处明显是周期运动或非周期运动的转速区域。比如,12000~15000rpm之间系统处于周期1的运动状态,而在频谱图中分析的10000rpm左右为非周期运动(具体是混沌还是准周期还可从庞加莱图判断,但从其附近的状态来讲,应该是混沌,实际上其频谱图也证明了这一点)。

3。需要补充说明的是:
这个算例只是为了考察轴承变刚度对转子系统动力特性的影响,所以其响应中的主要频率成分是变刚度频率fvc。对于工程实际中的转子系统,转子的不平衡量是无法去除的,在转速较高的情况下,响应中的频率成分会以不平衡力频率为主,所以变刚度的影响相对会很小,fvc不容易被试验测到。另外在存在不平衡量的情况下,应该用多频频闪法做庞加莱图和分岔图,虽然我认为多频法在轴承的变刚度分析中并很不实用,呵呵。

(全文完,盼望有人扔西红柿,谢绝砖头。)

[ 本帖最后由 toes 于 2006-9-6 19:10 编辑 ]

评分

2

查看全部评分

发表于 2006-9-6 21:34 | 显示全部楼层
动力学方程中的系数Kn是定常的吗?变刚度体现在哪?
还有这个系统有解析解吗?
发表于 2006-9-6 21:47 | 显示全部楼层
原帖由 hongking111 于 2006-9-6 21:34 发表
动力学方程中的系数Kn是定常的吗?变刚度体现在哪?
还有这个系统有解析解吗?


这里的Kn应该是个常数,变刚度应该体现在公式中的几个三角函数上

这个系统解析解估计是不太可能得到,不过近似解倒是有可能

上面仅是个人看法,希望楼主给出确切答案
 楼主| 发表于 2006-9-6 23:40 | 显示全部楼层
原帖由 hongking111 于 2006-9-6 21:34 发表
动力学方程中的系数Kn是定常的吗?变刚度体现在哪?
还有这个系统有解析解吗?


kn为常数。
变刚度体现在公式1-10。由这个公式得到的轴承当量刚度是随时间发生变化的。
好像没有看到有人求得它的解析解和近似解。
发表于 2006-9-7 21:15 | 显示全部楼层
原帖由 toes 于 2006-9-6 23:40 发表


kn为常数。
变刚度体现在公式1-10。由这个公式得到的轴承当量刚度是随时间发生变化的。
好像没有看到有人求得它的解析解和近似解。


如果要考虑近似解的话大家不知道有什么建议?比如用什么方法比较合适?
 楼主| 发表于 2006-9-8 15:41 | 显示全部楼层
估计有难度,因为这个模型中的非线性因素至少有两个:
1。单个滚珠与单个滚道之间力与变形的关系是非线性的,一般是3/2次方。
2。就算滚珠与滚道之间的刚度是常数,随着轴承的运转,整个轴承的当量刚度也是非线性的。

所以两个非线性因素叠加在一起的话,求近似解是有相当困难的。
发表于 2006-9-9 19:58 | 显示全部楼层
原帖由 toes 于 2006-9-8 15:41 发表
估计有难度,因为这个模型中的非线性因素至少有两个:
1。单个滚珠与单个滚道之间力与变形的关系是非线性的,一般是3/2次方。
2。就算滚珠与滚道之间的刚度是常数,随着轴承的运转,整个轴承的当量刚度也是非线 ...


当量刚度指的是哪一部分?
 楼主| 发表于 2006-9-9 20:18 | 显示全部楼层
指的是轴承径向载荷与径向位移之间的关系,由二者的比值可以得到一个当量刚度。
发表于 2006-9-11 16:15 | 显示全部楼层
精细地研究这个问题应该相当复杂!
如果转速较高,并且载荷较大的时候。
楼主用的Hertz定接触并不适用,此时接触刚度是动态变化的 ,需要考虑接触碰撞过程的能量耗散!
发表于 2006-9-11 17:30 | 显示全部楼层

球轴承的变刚度振动

知道质量,刚度,阻尼比,怎么计算阻尼?
发表于 2006-12-8 10:50 | 显示全部楼层
你建立动力学方程时,有没有考虑接触角的变化?你的接触角是否为常量
我也在做球轴承的非线性振动的研究,欢迎大家经常交流,加qq:23126773,验证码:轴承
发表于 2006-12-11 09:26 | 显示全部楼层

哈哈

什么叫“多频频闪法” ,怎么没听说过,查百度也只你这有,你是西工大袁如的学生吧?
发表于 2006-12-11 09:30 | 显示全部楼层

回上一楼问

他是拿别人估计是他师姐的东西重做了,我可以告诉你他没考虑轴承接触角变化
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-15 13:58 , Processed in 0.084524 second(s), 25 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表