|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
- Clear[QF1, QF2, ma, mb, a, b, ω, t, ka, kb, ca, cb, k, Ee,
- Ii]
- LagrangianEquations[T_, V_, Q_List,
- Coor_List] := Module[{L = T - V}, MapThread[∂\_t\ \((
- ∂\_\(∂\_t\ #2\)\ L)\) - ∂\_#2\ L == #1 &, {Q, Coor}]]
- Coords = {\((q[1])\)[t], \((q[2])\)[t], qa[t], qb[t]}\)
- ma = 0.1910507304
- mb = 0.0120078892
- ρ = 0.00304
- A = 5.25
- L = 50.0
- a = \((L/3)\)*1
- b = \((L/3)\)*2
- Ee = 10000000.0
- Ii = 3.5729300
- T = 1/2*ma*\((\((qa')\)[t])\)^2 + 1/2*mb*\((\((qb')\)[t])\)^2
- + \ 1/2*ρ*A*\((∑\+\(i = 1\)\%n\(∑\+\(j = 1\)\%n\((
- q[i]')\)[t]*\((q[ j]')\)[t]*
- \(∫\_0\%L\((\((Sin[\((i*π*x)\)/L])\)*
- \((Sin[\((j*π*x)\)/L])\))\) \[DifferentialD]x\)\))\)
- V = 1/2*ka* \((∑\+\(i = 1\)\%n\(∑\+\(j = 1\)\%n\((q[i])\)[t]*Sin[\((i*π*a)\)/L]*
- \(( q[j])\)[t]*Sin[\((j*π*a)\)/L]\) -
- 2*qa[t]*\(∑\+\(i = \1\)\%n\((q[i])\)[t]*
- Sin[\((i*π*a)\)/L]\) + \((qa[t])\)^2)\) +
- 1/2*kb* \((∑\+\(i = 1\)\%n\(∑\+\(j =
- 1\)\%n\((q[i])\)[t]*Sin[\((i*π*b)\)/L]*
- \((q[ j])\)[t]*Sin[\((j*π*b)\)/L]\) - 2*qb[t]*\(∑\+\(i =
- 1\)\%n\((q[i])\)[t]*Sin[\((i*π*b)\)/L]\) + \((qb[t])\)^2)\) +
- 1/2*Ee*Ii*
- \(∑\+\(i = 1\)\%n\(∑\+\(j = 1\)\%n\((\((q[i])\)[t]*\((q[j])\)[t]*
- \(∫\_0\%L D[Sin[\((i*π*x)\)/L], {
- x, 2}]*D[Sin[\((j*π*x)\)/L], {
- x, 2}] \[DifferentialD]x\))\)\)\)
- f[x_] = 1.0
- QF1 = Exp[I*ω*t]*\(∫\_0\%L f[x]*
- Sin[\((1*π*x)\)/L] \[DifferentialD]x\)
- QF2 = Exp[I*ω*
- t]*\(∫\_0\%L f[x]*Sin[\((2*π*x)\)/
- L] \[DifferentialD]x\)
- Q = {QF1, QF2, 0, 0}
- LagrangianEquations[T, V, Q, Coords]
- % /. \((q[1])\)[t] -> Q1[ω]*Exp[I*ω*t]
- % /. \((q[1]')\)[t] -> I*ω*Q1[ω]*Exp[I*ω*t]
- % /. \((\((
- q[1]')\)')\)[t] -> \((\(-ω^2\))\)*Q1[ω]*Exp[I*ω*t]
- % /. \((q[2])\)[t] -> Q2[ω]*Exp[I*ω*t]
- % /. \((q[2]')\)[t] -> I*ω*Q2[ω]*Exp[I*ω*t]
- % /. \((\((q[2]')\)')\)[
- t] -> \((\(-ω^2\))\)*Q2[ω]*Exp[I*ω*t]
- % /. qa[t] -> Qa[ω]*Exp[I*ω*t]
- % /. \((qa')\)[t] -> I*ω*Qa[ω]*Exp[I*ω*t]
- % /. \((\((qa')\)')\)[t] -> \((\(-ω^2\))\)*Qa[ω]*Exp[I*ω*t]
- % /. qb[t] -> Qb[ω]*Exp[I*ω*t]
- % /. \((qb')\)[t] -> I*ω*Qb[ω]*Exp[I*ω*t]
- LE = % /. \((\((
- qb')\)')\)[t] -> \((\(-ω^2\))\)*Qb[ω]*Exp[I*ω*t]
- eqn1[t] = LE[\((1)\)]
- eqn2[t] = LE[\((2)\)]
- eqna[t] = LE[\((3)\)]
- eqnb[t] = LE[\((4)\)]
- δ = 0.05
- k = 10000.0
- ca = 4.37093503
- cb = 1.095805147
- ka = k + I*\((ω*ca + k*δ)\)
- kb = k + I*\((ω*cb + k*δ)\)
- Solve[{eqn1[
- t], eqn2[t], eqna[t], eqnb[t]}, {Qa[ω], Qb[
- ω], Q1[ω], Q2[ω]}]
- QQ2[ω_] = Simplify[Q2[ω] /. %]
- frf1[ω_] = QQ2[ω/f[x]]
- frf[ω_] = frf1[ω]
- Mag[ω_] = Sqrt[\((Re[frf[ω]])\)^2 + \((Im[frf[ω]])\)^2]
- Pha[ω_] = Arg[frf[ω]]
- t = 0
- plot[Re[QQ2[ω]], {ω, 0, 3000}]
- plot[Im[QQ2[ω]], {ω, 0, 3000}]
- plot[Re[frf[ω]], {ω, 0, 3000}]
- plot[Im[frf[ω]], {ω, 0, 3000}]
- plot[Mag[ω], {ω, 0, 3000}]
- plot[Pha[ω], {ω, 0, 3000}]
复制代码
[ 本帖最后由 suffer 于 2007-4-12 21:10 编辑 ] |
|