声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

楼主: 无水1324

[近似分析] 非线性微分方程的近似解法讨论交流专题1——渐近解法、多尺度法

[复制链接]
发表于 2008-3-13 14:13 | 显示全部楼层
我现在想用多尺度法解呢
很好的资料,谢谢提供
回复 支持 反对
分享到:

使用道具 举报

发表于 2008-4-29 10:14 | 显示全部楼层
很好的资料:@)
谢谢::@)
发表于 2008-9-4 09:41 | 显示全部楼层

我来顶一下

我刚刚下载下来
这么好的东西怎么才让我找到
发表于 2008-9-11 21:10 | 显示全部楼层

我感觉自己跳得太多了

原来想做非线性时间序列分析的
后来学混沌同步
再后来用摄动法做非线性模态
现在看adomian渐近分解法
我看大家都在做很具体的系统
我到现在也不知道自己该做哪些
大家对我有什么建议吗
 楼主| 发表于 2008-9-12 10:39 | 显示全部楼层

回复 34楼 hehy350901 的帖子

你都不知道自己的系统是什么? 那你就找一个经典的系统,把这些方法学习一下,然后找到系统了,直接应用就好了
发表于 2008-9-12 20:16 | 显示全部楼层

回复 35楼 无水1324 的帖子

无水大哥,能给推荐个经典系统吗?我最早学统计,你说什么样的系统对这些方法说服力强呢
 楼主| 发表于 2008-9-13 10:11 | 显示全部楼层

回复 36楼 hehy350901 的帖子

Duffing, Van der Pol , Mathieu等等方程你都可以看一下
发表于 2009-3-29 17:13 | 显示全部楼层

回复 37楼 无水1324 的帖子

无水院长,请教你一个Mathieu-Duffing系统方程的求解,该系统为一个参数振动系统,想得到系统的频响曲线,稳定图,不知道怎么求解,恳求帮忙,谢谢
发表于 2009-4-9 21:11 | 显示全部楼层
原帖由 无水1324 于 2007-8-10 20:48 发表
http://www.esm.vt.edu/~anayfeh


楼上的要学会用google/baidu,你知道名字搜索一下“Nayfeh”第一个就是他的主页

其实国外一些出名的学者都有自己的主页(这点不象国内),而且里面有很多好东西,知道名字后用 ...


看了一晚的nayfeh,发觉自己的英文水平实在是不行啊。

楼上的说的是不是周期变系数非线性微分方程那?一般的书上讲到参数振动时,都只涉及到弗洛凯理论,但那只能分析周期变系数线性微粉方程,非线性的就不知道了。
 楼主| 发表于 2009-4-10 08:51 | 显示全部楼层

回复 38楼 petterchan 的帖子

小参数的时候用多尺度和LP方法等,Mathieu-Duffing做的比较多,可以找一些文献参考着 看。
发表于 2009-4-16 09:53 | 显示全部楼层
渐进法,多尺度法都只能解弱非线性系统啊,要是能介绍点强非线性的就好了.....
发表于 2009-4-16 09:56 | 显示全部楼层

回复 14楼 gghhjj 的帖子

请教下,我知道数值解法能解自由振动,能解强迫振动吗?具体什么方法 呢?
 楼主| 发表于 2009-5-3 22:20 | 显示全部楼层

回复 42楼 sunyao 的帖子

一样的可以求解的,我不知道你说的解自由振动的数值解法是哪些?
发表于 2009-5-12 10:19 | 显示全部楼层
请大家帮我看看这个一阶微分方程组怎么用平均法求解

http://forum.vibunion.com/forum/thread-81448-1-1.html
发表于 2010-1-13 15:04 | 显示全部楼层

回复 19楼 无水1324 的帖子

在船舶动力装置方面,南高齿也不错的,来我们学校招过,可惜我不是学做齿轮的
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-27 11:51 , Processed in 0.090426 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表