声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2019|回复: 7

[稳定性与分岔] 求助非线性方程的解

[复制链接]
发表于 2007-7-5 14:43 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
x(1)'=x(2)+x(1)*[a+2*((x(1)^2+x(2)^2)-(x(1)^2+x(2)^2)^2];
x(2)'=-x(1)+x(2)*[a+2*((x(1)^2+x(2)^2)-(x(1)^2+x(2)^2)^2];
当a在[-5 5]之间变化时,系统的平衡点和可能的极限环的变化情况,并以Matlab绘制的图形说明。
回复
分享到:

使用道具 举报

发表于 2007-7-5 15:50 | 显示全部楼层
系统的奇点可以通过导算子计算出,之后可以判断其稳定性,至于极限环可能要麻烦一点
发表于 2007-7-6 14:27 | 显示全部楼层
其实你就是想得到在你给的参数范围内的系统变化曲线------分岔图就可以了,然后可以利用中心流形分析他的一个分岔过程
发表于 2007-7-6 15:33 | 显示全部楼层

回复 #3 无水1324 的帖子

就一定会出现分岔吗?
发表于 2007-7-6 15:35 | 显示全部楼层
他这个系统太常见了,一般书上讲平面系统的时候都有这个例子,讲分岔的时候也是这个
发表于 2007-7-6 15:38 | 显示全部楼层
再说他的问题就是平衡点分岔的问题
发表于 2007-7-6 15:40 | 显示全部楼层

回复 #6 无水1324 的帖子

:@L 没有仔细瞧他的系统方程
:loveliness: 的确是比较常见的,也不难
发表于 2007-7-6 15:52 | 显示全部楼层

回复 #1 kdslyl 的帖子

所以楼主应该看一下着方面的书了
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-14 18:18 , Processed in 0.093774 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表