|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
这两天看资料,看到了一些非线性模态方面的论文,现将一篇硕士论文的绪论的部分内容摘录如下:
1非线性模态的发展历史简介
非线性模态的研究最早应从Kaudererr(1958)[1]的工作算起,而于20世纪60年代初,Rosenberg最先引入了非线性模态的概念[2],用于研究离散、无阻尼、保守非线性系统的自由振动.Rosenberg认为非线性模态是一种运动,并且根据这种运动在系统构形(Configuration)空间中对应经过平衡位置的直线(段)还是曲线(段)的特点,将非线性模态分为相似的(对应于直线)和非相似的(对应于曲线)两大类.Rosenberg之后,Greenberg, Atkinson, Taskett, Rand, Yang, Yen, King, Aubrecht, Azeez, PeIlicano Vakakisl[7~17]等人都在这方面做了研究.Vakakis与其同事(1990-1992)在一系列的研究中[12-17]首先引入动力系统理论,系统地分析了一类双质量弹簧保守强非线性系统的非线性模态及模态上的局部和全局动力学.Rosenberg的非线性模态理论,主导了该领域近三十年的研究.前面述及的工作基本上都属这一范畴,并且主要是针对保守系统的研究.然而这种理论有其自身的局限性,比如相似模态实际存在的可能性很小,此外,Rand, Pak和Vakakis[12]证明了另一种周期运动(E0)的存在,这种运动在系统构形空间中的投影是包含原点的椭圆,它既不是相似模态,也不是非相似模态.
1993年,Shaw和Pierre1251 提出一种新的非线性模态的定义,这是一种构造性方法,该方法借用了动力系统理论中不变流形的概念,将非线性模态定义为系统相空间中二维不变流形上的运动.Shaw和Pierre的这一开创性的工作,将非线性模态的研究和应用带入了一个新的发展阶段.
1996年,吴志强、陈予恕等[31]又将Shaw和Pierre的思想做了推广,他们引入了不可分偶数维不变流形的概念来定义非线性模态,认为非线性模态为系统模态空间中偶数维不变流形上的运动,并根据模态上的动力学方程将非线性模态分为非耦合模态、耦合模态和内共振模态.他们定义的非线性模态适用于一般的多自由度系统和奇数维系统,可以构造内共振系统的非祸合模态,也可构造内共振耦合模态.
我国学者刘练生和黄克累(1988)的工作[18]则将相似模态的概念作了推广,使之能用于非线性保守系统、非线性自治系统及非线性非自治系统等,刘济科等人[30](1995)运用匹配法和多尺法对一个两自由度非线性系统进行研究,详细分析了非线性系统的模态分叉和局部化现象.
另外,陆启韶、徐鉴、甘春标、徐健学、傅卫平等一大批国内专家学者在这一领域做了大量的理论和实践的工作.
2非线性模态的主要研究对象
非线性模态的研究主要包括非线性模态分析和非线性模态综合两个方面的内容.非线性模态分析主要包括非线性模态的定义与求解和模态动力学分析与模拟;非线性模态综合主要是指利用求得的非线性模态及相应模态上的动力学去构造和模拟系统的整体响应.目前,这一领域的工作主要属于非线性模态分析,而非线性模态综合方面的工作还很少,Shaw和Pierre等人的工作是针对特殊的、具体的情形进行的,其结论的一般性尚待深入研究.
针对于S haw和Pierre提出的非线性模态的定义和构造方法,我国学者陆启韶、徐鉴、甘春标等人都作了不少的工作.比如,陆启韶及其同事对Shaw和Pierre的非线性模态的叠加解的有效性进行了一些研究,取得了有关非线性模态叠加解有效性的一些新的认识结果.甘春标、陆启韶和黄克累[41]使用模态的方法分析了一个具有弹性耦合项的非线性耦合。Van der Pol振子系统,研究了此系统的非相似模态运动及分岔,理论和数值结果表明,模态的合成能有效地模拟原系统的衰减效应,当系统的参数穿越某个值后,系统的模态运动方程发生Hopf分岔,产生一个稳定的极限环,模态的合成失效,特别表现在相位上徐鉴、陆启韶和黄克累[42]利用非线性模态子空间的不变性研究两自由度非对称三次系统在非奇异条件下的非线性模态及其模态叠加解的有效性,数值结果表明,非线性模态解的有效性不仅与其局部性的限制有关,而且与模态动力学方程的静态分岔有关,即当参数取得使模态动力学方程的平衡解不产生静态分岔的值时,模态解描述原系统解的准确性受模态动力学方程的初值影响,初值越小,准确性越好,而当参数值取得使平衡解产生静态分岔的值时,非线性模态方法可能失效.
目前查到的关于非线性模态的学位论文主要有:
张永明,北京航空航天大学硕士学位论文,指导教师:陆启韶,两自由度混合非线性系统的非线性模态及其分岔分析,2002年
徐鉴,北京航空航天大学博士学位论文,指导教师:黄克雷,陆启韶,非线性时滞、时变系统分岔和非线性模态研究,1996年
需要的朋友可以去下载或者和我联系! |
|