|
LZ,我在其他论坛看过你发的帖子,我现在的课题是静电泵,现在我想研究的问题跟你很相似,不过我的薄膜一面是在有限空间的流体,一面是在空气中.
不知道对于这方面的知识您到现在掌握了多少.比如说固有频率的求法等等.
最近一直在研究ansys流固耦合,上面介绍FSI耦合求解方法可能适用于分析这种问题.
但是把上面例子的命令流复制成文本,运行,结果提示出错,可惜不知道错在哪,现把这命令流发出来
我最近在学习FSI流固耦合分析方法,我把HELP里面的例子的命令流复制下来,用文本格式导入ansys中,可老是出错,但由于是新手,不知道错误在哪边,希望高手能指点一下。
This example problem considers the fluid-solid interaction of a simple piston with a dissimilar mesh interface. The piston displacements are prescribed by a sinusoidal distribution in time. Figure 3.2: "Simple Piston" shows the mesh and boundary conditions for the problem. You determine the displacement and velocity distributions on the fluid side at the fluid-solid interface.
3.6.2. Problem Specifications
The cylinder and piston dimensions are:
Cylinder length = 1.0
Cylinder diameter = 0.25
Piston height = 0.10
The solid material properties are:
Young's modulus = 1.0e11
Density = 10
Poisson's ratio = 0.3
The fluid properties are:
Bulk modulus = 10000
Density = 1.0
Viscosity = 0.001
Thermal conductivity = 1.0
Specific heat = 1.0
The piston motion is sinusoidal with a maximum displacement of 0.85
/BATCH
MAXDISP = 0.85
*DEL,_FNCNAME
*DEL,_FNCMTID
*DEL,_FNC_C1
*DEL,_FNC_C2
*SET,_FNCNAME,'uxdsp'
*DIM,_FNC_C1,,1
*DIM,_FNC_C2,,1
*SET,_FNC_C1(1),MAXDISP
*SET,_FNC_C2(1),2.5
! /INPUT,time.func
*DIM,%_FNCNAME%,TABLE,6,4,1
! Begin of equation: a*sin(omega*{TIME})
%_FNCNAME%(0,0,1)= 0.0, -999
%_FNCNAME%(2,0,1)= 0.0
%_FNCNAME%(3,0,1)= %_FNC_C1(1)%
%_FNCNAME%(4,0,1)= %_FNC_C2(1)%
%_FNCNAME%(5,0,1)= 0.0
%_FNCNAME%(6,0,1)= 0.0
%_FNCNAME%(0,1,1)= 1.0, -1, 0, 1, 18, 3, 1
%_FNCNAME%(0,2,1)= 0.0, -1, 9, 1, -1, 0, 0
%_FNCNAME%(0,3,1)= 0, -2, 0, 1, 17, 3, -1
%_FNCNAME%(0,4,1)= 0.0, 99, 0, 1, -2, 0, 0
! End of equation: a*sin(omega*{TIME})
!-->
/PREP7
ET,1,141
KEYOPT,1,4,1
ET,2,42
RECT,0.1,1.0,,0.25
TYPE,1
LESIZE,4,,,4
LESIZE,2,,,4
LESIZE,1,,,8
LESIZE,3,,,8
ALLSEL
AMESH,ALL
ALLSEL,BELOW,AREA
NSEL,R,LOC,X,0.1
SF,ALL,FSIN,1
ALLSEL,BELOW,AREA
NSEL,R,LOC,X,1
D,ALL,UX,0
D, ALL, UY,0
D, ALL, PRES,0
ALLSEL, BELOW, AREA
NSEL,R,LOC,Y,0
D, ALL, UY,0
D, ALL, VY,0
ALLSEL, BELOW, AREA
NSEL,R,LOC,Y,0.25
D,ALL,UY,0
D,ALL,VY,0
ALLSEL
RECT,,0.1,,0.25
LESIZE,5,,,2
LESIZE,7,,,2
LESIZE,8,,,4
LESIZE,6,,,4
TYPE,2
MAT,1
ALLSEL
ASEL,S,,,2
ALLSEL,BELOW,AREA
AMESH,ALL
ALLSEL,BELOW,AREA
NSEL,R,LOC,X,0.1
SF,ALL,FSIN,1
ALLSEL,BELOW,AREA
NSEL,R,EXT
D,ALL,UX,%uxdsp%
D,ALL,UY,0
ALLSEL
! Solid Material properties
MP,EX,1,2.0E11
MP,DENS,1,7800
MP,PRXY,1,0.3
FLDATA1,SOLU,FLOW,1
FLDATA1,SOLU,TEMP,0
FLDATA1,SOLU,TRAN,1
FLDATA1,SOLU,ALE,1
FLDATA2,TIME,GLOB,10,
! Fluid Material properties
FLDATA7,PROT,DENS,AIR-SI
FLDATA7,PROT,VISC,AIR-SI
FINISH
/SOLU
FSAN,ON !FSI analysis on
FSCO,ALL,1.0e-2 !Convergence for all FSI interface quantities
FSRE,ALL,1.0 !Relaxation for all FSI interface quantities
FSOU,1 !Output frequency for results file
DELTIM,0.0125 ! Time increment for SOLID analysis
FLDA, TIME, STEP, 0.0125 !Time increment for FLUID analysis
FSIT, 10 ! Number of stagger iterations per time step
FSTI, 1.0 ! End time for FSI analysis
FSDT,0.0125 ! Time increment for FSI analysis
FSOR,SOLID ! Order for FSI analysis (SOLID first)
FSTR,SOLID, ! Transient analysis for SOLID analysis
FSTR,FLUID, ! Transient analysis for FLUID analysis
SAVE
SOLVE
SAVE
FINISH
/SOLU
FSRS,TIME,1.0 ! Restart time for FSI analysis
FSTI,1.25 ! End time for FSI analysis
FSDT,0.0125 ! Time increment for FSI analysis
SOLVE
SAVE
FINISH
/POST26
FILE,,rfl
NSOL,2,23,UX
NSOL,3,23,VX
PRVAR,2
PLVAR,2
PRVAR,3
PLVAR,3
FINISH |
|