本人自己写的蚁群算法。完全能够实现功能,就是收敛速度感觉有点慢。
- % function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACO(C,D,s,e,NC_max,m,Alpha,Beta,Rho,Q)
- % function [Shortest_Route,Shortest_Length]=ACOR(C,D,s,e,NC_max,m,Alpha,Beta,Rho,Q)
- %%=========================================================================
- %% ACO.m
- %% Ant Colony Optimization Algorithm for Road Select Problem
- %% LiLixin,ShenYang Insitute of Aeronautical engineering ,ShenYang,China
- %% Email:myassist@163.com
- %% All rights reserved
- %%-------------------------------------------------------------------------
- %% 主要符号说明
- %% C n个城市的坐标,n×2的矩阵
- %% D 道路连通加权矩阵
- %% s 起点
- %% e 终点
- %% NC_max 最大迭代次数
- %% m 蚂蚁个数
- %% Alpha 表征信息素重要程度的参数
- %% Beta 表征启发式因子重要程度的参数
- %% Rho 信息素蒸发系数
- %% Q 信息素增加强度系数
- %% R_best 各代最佳路线
- %% L_best 各代最佳路线的长度
- %%=========================================================================
- %
- clc
- clear
- % 设置初始参数如下:
- m=10;Alpha=1;Beta=5;Rho=0.1;NC_max=100;Q=100;
- %设定起始点
- s=1;e=50;
- % 31城市坐标为:
- C=[601.6 971.7
- 988.8 482.6
- 54.4 549.6
- 95.4 868
- 529.1 429.5
- 982 350.5
- 654.3 23.2
- 738.1 372
- 538.9 593.7
- 560.1 850.3
- 229.2 805.9
- 411.2 710
- 83.2 706.2
- 937.4 800.5
- 11.9 994.4
- 694.1 809.1
- 795.4 758.8
- 338.9 148.1
- 955.8 643.8
- 345.7 726.2
- 550.3 349.6
- 183.7 935.1
- 640 544
- 854.6 842.4
- 199.3 547.9
- 434.1 921.4
- 405.5 624.2
- 272.3 998.1
- 772 24.4
- 385.2 327.4
- 320.3 410.4
- 890 90
- 810 580
- 180 80
- 185 300
- 950 200
- 850 258.6
- 50 450
- 150 402
- 345 900
- 450 800
- 621 700
- 564.3 180
- 80.5 280
- 750 950
- 450 500
- 300 50
- 900 530
- 300 520
- 152 189.6
- ];
- D=[0 0 0 0 0 0 0 0 0 76.92 0 0 0 0 0 230.95 0 0 0 0 0 0 0 0 0 76.894 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 157.34 0 0 0 0 0
- 0 0 0 0 0 140.78 0 325.12 0 0 0 0 0 0 0 0 0 0 155.71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.913 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 74.247 0 0 0 0 0 0 0 0 0 0 0 55.603 0 0 0 0 0 0 0 0 0 0 0 0 76.921 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 147.8 0 76.551 0 76.908 0 0 0 0 0 0 79.548 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 84.189 0 0 0 0 0 0 0 0 166.74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.915 0 0 0 0
- 0 140.78 0 0 0 0 0 211.43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.91 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 205.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.91 0 0 0 0 0 0 0 0 0 0 0 0 0 76.901 0 0 0 156.87 0 0 0
- 0 325.12 0 0 0 211.43 205.65 0 0 0 0 0 0 0 0 0 0 0 0 0 79.979 0 258.19 0 0 0 0 0 0 0 0 0 0 0 0 0 73.841 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 76.898 0 0 0 0 0 0 0 0 0 0 79.382 0 0 0 75.438 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 76.92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80.01 0 0 0 0 0 0 0 0 0 79.064 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.919 0 0 0 0 0 0 0 0 0
- 0 0 0 147.8 0 0 0 0 0 0 0 0 147.14 0 0 0 0 0 0 163.89 0 60.464 0 0 0 0 0 151.26 0 0 0 0 0 0 0 0 0 0 0 76.852 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 76.898 0 0 0 0 0 0 0 0 0 0 76.922 0 0 0 0 0 0 81.004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 74.247 76.551 0 0 0 0 0 0 147.14 0 0 0 0 0 0 0 0 0 0 0 0 0 155.58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 79.124 0 79.49 0 0 0 0 76.899 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 76.908 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.889 0 0 0 0 0 76.886 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 230.95 0 0 0 0 0 0 0 0 80.01 0 0 0 0 0 0 78.141 0 0 0 0 0 0 154.69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 157.07 0 0 161.07 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 79.124 0 78.141 0 0 76.92 0 0 0 0 0 0 0 0 0 0 0 0 0 78.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128.28 0 0 0 62.948 0 0 0 0 0 0 0 0 154.95 0 0 0 80.368 0 0 0
- 0 155.71 0 0 0 0 0 0 0 0 0 0 0 79.49 0 0 76.92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.89 0 0
- 0 0 0 0 0 0 0 0 0 0 163.89 76.922 0 0 0 0 0 0 0 0 0 0 0 0 163.74 0 76.919 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 84.189 0 0 79.979 0 0 0 0 0 0 0 0 0 0 0 0 0 0 152.52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77.57 0 0 0 0 0 0 0
- 0 0 0 79.548 0 0 0 0 0 0 60.464 0 0 0 76.889 0 0 0 0 0 0 0 0 0 0 0 0 76.892 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 258.19 79.382 0 0 0 0 0 0 0 0 0 0 0 152.52 0 0 0 0 0 0 0 0 0 0 0 161.33 0 0 0 0 0 0 0 0 157.1 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 76.899 0 154.69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 62.691 0 0 0 0 0
- 0 0 55.603 0 0 0 0 0 0 0 0 0 155.58 0 0 0 0 0 0 163.74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 79.451 0 0 0 0 0 0 0 0 0 79.409 0
- 76.894 0 0 0 0 0 0 0 0 79.064 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77.742 0 0 0 0 0 0 0 0 0 0 0 76.928 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 75.438 0 0 81.004 0 0 0 0 0 0 0 76.919 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 151.26 0 0 0 76.886 0 0 0 0 0 0 76.892 0 0 0 77.742 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 76.91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.913 0 0 0 0 78.324 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 166.74 0 0 0 0 0 0 0 0 0 0 0 0 128.28 0 0 0 0 0 0 0 0 0 0 0 0 79.988 0 0 0 157.22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 79.988 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.911 0 0 76.918 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.913 0 0 0 0 0 0 76.921 76.907 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 78.001 0 0 0 0 0 161.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.914 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 62.948 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.916 0 0 76.923
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 157.22 0 0 0 0 0 0 0 0 80.495 0 0 0 0 76.92 0 0 0 0 0 76.926
- 0 0 0 0 0 76.91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.921 0 0 0 0 76.888 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 73.841 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 78.324 0 0 76.907 0 0 0 76.888 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 76.921 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.92 0 0 0 0 76.908 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 79.451 0 0 0 0 0 0 0 0 0 80.495 0 0 76.92 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 76.852 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.928 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77.96 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 76.919 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77.96 0 76.893 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 157.07 0 0 0 0 0 0 157.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.893 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 76.901 0 0 0 0 0 0 0 0 0 0 154.95 0 0 77.57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.92 0 0 76.908 0 0 0 0 0 0 0 0 0 0 0 76.921
- 157.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 161.07 0 0 0 0 0 0 0 62.691 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 76.915 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.912 0
- 0 0 0 0 0 0 156.87 0 0 0 0 0 0 0 0 0 0 80.368 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.916 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 76.913 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.89 0 0 0 0 0 0 0 0 0 0 0 0 0 76.914 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 79.409 0 0 0 0 0 76.918 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.912 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.923 76.926 0 0 0 0 0 0 0 0 76.921 0 0 0 0 0 0
- ];
- %%第一步:变量初始化
- n=size(C,1);%n表示问题的规模(城市个数)
- gplot(D , C);%画无向图
- hold on
- XX=C';
- plot(XX(1 , :) , XX(2 , :) , 'k+', 'markersize' , 5) %画十字架
- for i=1:n
- text(C(i,1)+5,C(i,2),int2str(i)); %加标号
- end
- for i=1:n
- for j=1:n
- if D(i,j)==0
- D(i,j)=inf;
- end
- end
- end
- Eta=1./D;%Eta为启发因子,这里设为距离的倒数
- Tau=ones(n,n);%Tau为信息素矩阵
- Tabu=zeros(m,n);%存储并记录路径的生成
- NC=1;%迭代计数器
- R_best=zeros(NC_max,n);%各代最佳路线
- L_best=inf.*ones(NC_max,1);%各代最佳路线的长度
- lastmin=inf; %上代最小路径
- thesameNum=0; %终止算法条件之一
- while NC<=NC_max%停止条件之一:达到最大迭代次数
- %%第二步:将m只蚂蚁放到n个城市上
- Randpos=ones(1,m)*s;
- Tabu(:,1)=(Randpos(1,1:m))';
- %%第三步:m只蚂蚁按概率函数选择相通的下一座城市,直到到达目的地
- for i=1:m
- %按概率原则选取下一个城市
- %只有当达到最后的节点等于终点时候才结束
- j=2;
- to_visit=s;
- while to_visit~=e
- visited=Tabu(i,1:(j-1));%已访问的城市
- % 得到矩阵中最后一个不为0的数 ,即蚂蚁爬到的最后节点
- col=size(visited,2);
- lastvisited=visited(end);
- J=[];%待访问的城市,随机分布
- P=J;%待访问城市的选择概率分布
- Jc=1;
- JJ=randperm(n);%随机分布
- for k=1:n
- flag=bHaveNum(visited,JJ(k));
- if flag~=1
- if D(lastvisited,JJ(k))~=inf
- J(Jc)=JJ(k);
- Jc=Jc+1;
- end
- end
- end
- if length(J) ==0
- break;
- end
- %下面计算待选城市的概率分布
- for k=1:length(J)
- P(k)=(Tau(lastvisited,J(k))^Alpha)*(Eta(lastvisited,J(k))^Beta);
- end
- P=P/(sum(P));
- Pcum=cumsum(P);
- Select=find(Pcum>=rand);
- kk=randperm(length(Select));
- to_visit=J(Select(kk(1)));
- Tabu(i,j)=to_visit;
- j=j+1;
- end
- end
- %%第四步:记录本次迭代最佳路线
- L=zeros(m,1);
- for i=1:m
- R=Tabu(i,:);
- F=thelastNum(R);
- if R(F)==e
- for j=1:(n-1)
- if R(j+1)~=0
- L(i)=L(i)+D(R(j),R(j+1));
- end
- end
- else
- L(i)=inf;
- end
- end
- if lastmin~=min(L)
- thesameNum=0;
- else
- thesameNum=thesameNum+1;
- end
- if (thesameNum >0.2*NC_max)
- break;
- end
- L_best(NC)=min(L);
-
- pos=find(L==L_best(NC));
- R_best(NC,:)=Tabu(pos(1),:);
- NC=NC+1;
- %%第五步:更新信息素
- Delta_Tau=zeros(n,n);
- for i=1:m
- for j=1:(n-1)
- if Tabu(i,j+1)~=0
- Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
- end
- end
- end
- Tau=(1-Rho).*Tau+Delta_Tau;
-
- %%第六步:禁忌表清零
- Tabu=zeros(m,n);
- end
- %%第七步:输出结果
- Pos=find(L_best==min(L_best));
- Shortest_Route=R_best(Pos(1),:);
- Shortest_Length=L_best(Pos(1));
- F=thelastNum(Shortest_Route);
- Shortest_Route=Shortest_Route(1:F);
- plot(XX(1 , Shortest_Route') , XX(2 , Shortest_Route') , 'g' , 'linewidth' , 1) %画结果路径
- hold off
复制代码
|