|
楼主 |
发表于 2008-6-8 13:12
|
显示全部楼层
昨天刚答辩完,今天把《汽车理论(第4版)》227页的一个图的程序贴上来,和大家分享一下(如果有侵权嫌疑的话,还麻烦版主或管理员删掉)。
之所以分享,个人觉得有以下两点:(1)用到了plotyy命令;(2)综合了一些标注的命令。
程序编的不好的地方还请大家指点。
其中,斜线问题在本程序中还没有得到解决,期待高手能够帮忙解决一下,谢谢啦!-
- clf
- clc
- clear
- close
- %设置图片背景为白色
- fig=figure;
- set(fig,'Color',[1,1,1]);
- %__________________________________________________________________________
- global Gqn0 n0 u f_x
- f0=1; %车身-车轮双质量系统车身部分固有频率,单位:Hz
- varsigma=0.25; %车身-车轮双质量系统阻尼比
- gamma=9; %车身-车轮双质量系统刚度比
- mu=10; %车身-车轮双质量系统质量比
- u=20; %车速,单位:m/s
- Gqn0=64e-6;%路面不平度系数,单位:m3
- n0=0.1; %参考空间频率,单位:m-1
- detaf=0.002; %计算时频率步长,单位:Hz
- N=18000; %频率点数
- f_x_array=logspace(-1,2,35);
- M=length(f_x_array);
- f=0.1:detaf:(N*detaf-0.1);
- %__________________________________________________________________________
- subplot(2,1,1);
- Gdqf=fun2;
- loglog([0.1 N*detaf-0.1],[Gdqf(1) Gdqf(1)],'linewidth',1.5,'linestyle','-','color','b');
- set(gca,'XLim',[0.1 N*detaf-0.1],'XTickLabel',{'0.1','1','10'},'XMinorTick','off','Ylim',[1e-4 1e-2],'YMinorTick','off');
- XLabel({'激振频率 \itf \rm / Hz','a )'},'FontSize',10,'FontName','Times');
- Ylabel('$$G_{\dot{q}}(f)/\rm (m^2\cdot s^{-1})$$','Interpreter','latex','FontSize',10);
- text(1.895,0.00272,{'B 级路面','车速\it u\rm = 20 m / s'},'FontName','Times','FontSize',10,'HorizontalAlignment','center');
- %__________________________________________________________________________
- subplot(2,1,2);
- Gdqf=fun2;
- loglog(f,Gdqf);
- hold on
- Dddz2dq=fun7(f,f0,varsigma,gamma,mu);
- Gddz2f=Dddz2dq.^2.*Gdqf;
- [AX,H1,H2]=plotyy(f,Gddz2f,f,Dddz2dq.^2,@loglog,@loglog);
- set(AX(1),'XLim',[0.1 N*detaf-0.1],'XTickLabel',{'0.1','1','10'},'XColor','k','XMinorTick','off','Ylim',[1e-4 1],'Ycolor','k','YMinorTick','off');
- set(AX(2),'XLim',[0.1 N*detaf],'XTickLabel',{'','',''},'XColor','k','XMinorTick','off','Ylim',[1 10000],'YTickLabel',{'1','10','','',''},'Ycolor','k','YMinorTick','off','Visible','on');
- set(H1,'linewidth',1.5,'linestyle','-','color','g');
- set(H2,'linewidth',1.5,'linestyle','--','color','r');
- XLabel({'激振频率 \itf \rm / Hz','b )'},'FontSize',10,'FontName','Times');
- set(get(AX(1),'Ylabel'),'String','$$G_{\ddot{z}_2}(f)/\rm (m^2\cdot s^{-3})$$','Interpreter','latex');
- set(get(AX(2),'Ylabel'),'String','$$\left|\frac{\ddot{z}_2}{\dot{q}}\right|^2/\rm s^{-2}$$','Interpreter','latex');
- text('Interpreter','latex','String','$$\it G_{\dot{q}}(f)$$','Position',[0.6 1e-3],'FontSize',10);
- text('Interpreter','latex','String','$$\sigma{_{\ddot{z}_2}^2}$$','Position',[3 1e-3],'FontSize',10);
- text(36.84,0.01035,'10^2');
- text(36.84,0.1035,'10^3');
- text(36.84,1.035,'10^4');
- box on;
- hold on
- %蓝色竖线___________________________________________________________________
- for i=1:M
- f_x=f_x_array(i);
- plot([f_x,f_x],[1e-4,fun7(f_x,f0,varsigma,gamma,mu).^2.*fun2])
- hold on
- end
- %__________________________________________________________________________
- %渐近线
- X1=[0.1,1];
- Y1=[10^(2*log10(0.1)+log10((2*pi)^2)+log10(fun2)),10^(2*log10(1)+log10((2*pi)^2)+log10(fun2))];
- plot(X1,Y1,'k')
- hold on
- X2=[1,10^(((2*log10(1)+log10((2*pi)^2)+log10(fun2))-(log10(16*pi^2*varsigma^2*gamma^2*mu^2*f0^6)+log10(fun2)))/(-4))];
- Y2=[10^(2*log10(1)+log10((2*pi)^2)+log10(fun2)),10^(2*log10(1)+log10((2*pi)^2)+log10(fun2))];
- plot(X2,Y2,'k')
- hold on
- X3=[10^(((2*log10(1)+log10((2*pi)^2)+log10(fun2))-(log10(16*pi^2*varsigma^2*gamma^2*mu^2*f0^6)+log10(fun2)))/(-4)),N*detaf-0.1];
- Y3=[10^(2*log10(1)+log10((2*pi)^2)+log10(fun2)),10^(-4*log10(N*detaf-0.1)+log10(16*pi^2*varsigma^2*gamma^2*mu^2*f0^6)+log10(fun2))];
- plot(X3,Y3,'k')
- hold on
- X4=[0.1,1];
- Y4=[10^(2*log10(0.1)+log10((2*pi)^2)-4),10^(2*log10(1)+log10((2*pi)^2)-4)];
- plot(X4,Y4,'k')
- hold on
- X5=[1,10^(((2*log10(1)+log10((2*pi)^2))-(log10(16*pi^2*varsigma^2*gamma^2*mu^2*f0^6)))/(-4))];
- Y5=[10^(2*log10(1)+log10((2*pi)^2)-4),10^(2*log10(1)+log10((2*pi)^2)-4)];
- plot(X5,Y5,'k')
- hold on
- X6=[10^(((2*log10(1)+log10((2*pi)^2))-(log10(16*pi^2*varsigma^2*gamma^2*mu^2*f0^6)))/(-4)),N*detaf-0.1];
- Y6=[10^(2*log10(1)+log10((2*pi)^2)-4),10^(-4*log10(N*detaf-0.1)+log10(16*pi^2*varsigma^2*gamma^2*mu^2*f0^6)-4)];
- plot(X6,Y6,'k')
- hold on
- text(0.3,6e-3,'+2:1','FontSize',10);
- text(12,1e-2,'-4:1','FontSize',10);
复制代码-
- %时间频率的不平度垂直速度的功率谱密度关系式
- function Gdqf=fun2
- global Gqn0 n0 u
- Gdqf=4*pi^2*Gqn0*n0^2*u;
- end
复制代码-
- %双质量系统的车身加速度对路面不平度垂直速度函数的幅频特性
- function Dddz2dq=fun7(f,f0,varsigma,gamma,mu)
- Dddz2dq=fun1(f).*fun6(f,f0,varsigma,gamma,mu);
- end
复制代码- %圆频率
- function omega=fun1(f)
- omega=2*pi*f;
- end
复制代码- %双质量系统车身位移对路面位移的频率响应函数的幅频特性
- function Dz2q=fun6(f,f0,varsigma,gamma,mu)
- Dz2q=fun31(f,f0,varsigma).*fun5(f,f0,varsigma,gamma,mu);
- end
复制代码- %单质量系统位移输入与位移输出的幅频特性(频率)
- function Szqf=fun31(f,f0,varsigma)
- Szqf=sqrt((1+(2*varsigma*(f/f0)).^2)./((1-(f/f0).^2).^2+(2*varsigma*(f/f0)).^2));
- end
复制代码- %双质量系统车身位移对路面位移的频率响应函数的幅频特性
- function Dz1q=fun5(f,f0,varsigma,gamma,mu)
- Dz1q=gamma*sqrt(((1-(f/f0).^2).^2+4*varsigma^2*(f/f0).^2)./(((1-(f/f0).^2).*(1+gamma-1/mu*(f/f0).^2)-1).^2+(4*varsigma^2*(f/f0).^2.*(gamma-(1/mu+1)*(f/f0).^2).^2)));
- end
复制代码
[ 本帖最后由 ch_j1985 于 2008-6-8 13:15 编辑 ] |
-
公式
-
效果图
评分
-
1
查看全部评分
-
|