声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 1620|回复: 0

[应用数学] 带参数的广义积分数值算法应用的一个实例

[复制链接]
发表于 2008-12-26 21:30 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
移动集中荷载作用下无限长梁稳态振动的挠度解:
  fm=D*beta^4-m*beta^2*v^2+K-i*yita*v*beta;
  W1=p*exp(i*beta*x)/(2*pi*fm);
其中:D,m,K,yita,p为荷载、梁和地基参数,i为虚数,计算时均为已知。
梁的稳态振动的挠度解W(x)为W1关于beta在负无穷大~无穷大上的积分。
    由于被积函数关于beta是振荡衰减的,因此可选择一个固定的积分上下限,将广义积分化为定积分来求得W(x)和x的关系图(此问题东南大学孙璐及浙江大学周华飞等人都有过研究,有结果可参考)。我认为方法有如下三种:1.根据积分定义来求;2.按照本论坛xjzuo版主等提出的方法来求;3.根据Matlab自带的iFFT算法来获得(此法很多文献都提及)。
下面将每种方法的源程序列出:(程序中参数选取和孙璐文一致)
%%%%带参数的广义无穷积分(方法一.按积分的定义求)
     t0=3;
    x=linspace(-t0,t0,121);
    space=0.21;                                
    A=40;
      f=0;
      for beta=-A:space:A              
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 梁、地基、荷载参数
                D=2.3*10^3;                                          
                m=48.2;
                K=6.89*10^7;
                yita=2.3*10^5;
                p=1.05*10^4;
                v=40;               
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                fm=D*beta^4-m*(beta*v)^2+K-i*yita*v*beta;
                fun=1000*p*exp(i*beta*x)*space/(2*pi*fm);   %mm 单位
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                f=f+fun;
        end  
       plot(x,f)
  hold on  


%%%%带参数的广义无穷积分(方法二.xjzuo版主等提出的方法)
            syms beta
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 梁、地基、荷载参数
                D=2.3*10^3;                                          
                m=48.2;
                K=6.89*10^7;
                yita=2.3*10^5;
                p=1.05*10^4;
                v=40;               
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                t0=3;
                x=linspace(-t0,t0,121);
            for j=1:length(x)
                xx=x(j);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                fm=D*beta.^4-m*(beta*v).^2+K-i*yita*v*beta;
                fun=inline(1000*p*exp(i*beta*xx)./(2*pi*fm));   %mm 单位
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
               f(j)=quadl(fun,-40,40);  %% quad实质上即是自适应性simpson积分算法;
           end  
       plot(x,f)
  hold on  

%%%%带参数的广义无穷积分(方法三. 调用Matlab的IFFT算法)
运行后可知,方法一很快得到与孙璐等相同的结果;方法二也可得到满意的结果,但比方法一耗时长,大家可试一试;
至于方法三,可将被积函数积分限截断,并写成级数的形式,将x离散成很多点,此形式和IFFT算法的形式十分相似,许多文献也提及用此法来获得数值结果,编程应该较简单,但我尝试用此思路编程,一直未能得到和方法一,方法二的结果,求高手指点!


评分

1

查看全部评分

回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-13 15:59 , Processed in 0.052363 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表