|
楼主 |
发表于 2005-7-10 22:01
|
显示全部楼层
本帖最后由 wdhd 于 2016-8-30 13:59 编辑
数据传输总线是机载计算机系统中的关键技术之一,随着计算机体系结构的演变,总线技术也发生了深刻的变革。最初在航空中得到应用的总线是ARINC 429,这是一种单向数据总线,最多可与20个接收终端相连接,数据传输速率最高为100Kb/S,目前已在波音757、767、A310、A320等大型客机上被采用。1973年,美国公布了军用标准MIL-STD-1553B总线,这是一种双余度的双向总线,最多可连接31个接收终端,数据传输速率最高为1Mb/S,使用双相曼彻斯特编码格式。这种总线不崐仅被应用于空军,而且也被应用于海军、航天等领域,它不仅得到美国认可,在F-16、F-18、B-1和AV-8B等多种飞机上得到应用,而且在欧洲等国也被广泛采用。与此同时,波音公司花费5年多的时间研制了一种与MIL-STD-1553B总线相当的总线,当时该总线被称之为数字式自主终端存取通信(DATAC),目前被确定为ARINC 629标准总线。它最多可连接120个终端,数据传输速率最高为2Mb/S,使用双相曼彻斯特编码格式,采用的通讯协议为带有冲突回避的载波检测多路存取 (CSMA/CD)的工作协议。美空军从80年代初开始,在SAE 4074.1和SAE 4074.2总线标准的基础上,公布了高速光纤总线标准,称之为J88-N2,其数据传输速率为50Mb/S,分为高速线性总线和高速环型总线两大类,采用令牌方式工作协议。该总线目前已在F-22飞机上应用。与此同时,象波音777飞机,采用了光纤分布式数据接口(FDDI)的光纤数据传输总线。从90年代初开始,以麦道飞机公司为首的一些公司,开始了在21世纪初军用飞机航空电子系统中采用新一代高速光纤总线的研制工作。该总线应能支持多种数据传输速率(能同时适应传感器、视频和数据通讯),同一时刻能提供多个数据传输通路,不依赖于任何通讯协议,网络必须能提供通讯双方之间之直接通路,且应该是容错的。根据目前有关资料表明: 未来综合化射频部分与数据处理部分的传输速率为 7Gb/S,综合化光电部分与数据处理部分的传输速率为 2Gb/S,座舱显示与数据处理部分的传输速率为2Gb/S,数据处理部分本身的传输速率为1Gb/S。
国外从第三代飞机就已开始模块化的初步工作,并在标准化的基础上,DAIS计划的最终成果是形成了MIL-STD-1750A、1553B、1589C、1760A等军用标准,其机载计算机核心模块在一个型号飞机内部也实现了通用化。在研制第四代飞机时,从一开始就特别强调了标准化、通用化和模块化。在标准化方面,规定了i80960和R3000为标准计算机体系结构;J88-N2、PI和TM为标准总线;Ada为标准编程语言;SEM-E型尺寸为标准电子模块尺寸。在通用化、模块化方面,明确提出了23种通用电子模块(F-22飞机上的CIP最后又统一为 12种)。与第三代航空电子相比较,第四代航空电子在通用化、标准化、模块化方面有以下几个特点: ①从一开始就着手抓这方面的工作。②通用电子模块的范围有了较大的扩充(从计算机核心模块扩充到接口模块,从数字模块扩充到模拟模块等)。③不是仅仅着眼于一个型号飞机内的通用问题,而且考虑"跨越"飞机的通用问题(如"宝石柱"计划提出的通用电子模块针对ATF(先进战术战斗机)、ATA(先进战术攻击机)和LHX(先进直升机试验机)三种飞机)。
由上可见,第四代机载航空电子系统与第三代系统的主要区别之一是功能的高度综合,而这高度综合是通过信息和资源的高度共享实现的。第四代战斗机航空电子系统中的机载计算机几乎已不存在为某个子系统所专有的情况,而是作为整个航空电子系统共有的资源,机载计算机不再是满足某个子系统的规范要求,而是在航空电子系统总体设计时就将其作为一个重要的方面进行综合考虑。正因为如此,美国空军制订的"宝石柱" 航空电子综合系统不仅在任务效能方面获得惊人的改善,而且提高了系统的容错性、通用性和可*性,简化了维修工作,减少了全寿命周期的费用。
|
|